scholarly journals Experimental Investigation on the Fire Resistance of Glued-In Rod Timber Joints with Heat Resistant Modified Epoxy Resin

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2731
Author(s):  
Liquan Luo ◽  
Benkai Shi ◽  
Weiqing Liu ◽  
Huifeng Yang ◽  
Zhibin Ling

This paper presents an experimental evaluation of the fire resistance of glued-in rod timber joints using epoxy resin, with and without modification. A heat-resistant modified resin was designed by adding inorganic additives into the epoxy resin, aiming to improve the heat resistance. Joints that were made using the modified epoxy resin at room temperature showed a bearing capacity comparable to those with commercial epoxy resin. Twenty-one joint specimens with the modified epoxy resin and six with a commercial epoxy resin were tested in a fire furnace to evaluate the fire resistance. The main failure mode was the pull-out of the rod, which is typical in fire tests of this type of joints. As to the effects of the test parameters, this study considered the effects of adhesive types, sectional sizes, stress levels, and fireproof coatings. The test results showed that the fire resistance period of a joint can be evidently improved by modifying the resin and using the fireproof coating, as the improvements reached 73% and 35%, respectively, compared with the joint specimens with commercial epoxy resin. It was also found that, for all specimens, the fire resistance period decreased with an increase in the stress level and increased with an increase in the sectional sizes.

2016 ◽  
Vol 78 (5-4) ◽  
Author(s):  
Tengku Anita Raja Hussin ◽  
Mohamad Iswandi Jinne ◽  
Rohana Hassan

This paper presents an experimental program for testing glued-in dowel glulam timber joints. Hundred thirty glulam specimens, each with a single glued-in rebar parallel to the grain and perpendicular to grain with different size of dowels 12mm, 16mm and 20mm were tested to evaluate the effects of anchorage length and different dowel diameter for parallel and perpendicular to the grain on pull-out strength and bond behaviour of glued-in rebar timber joints. The test results showed that the maximum load for specimen with dowel glued-in parallel to the grain given the higher maximum load than dowel glued-in perpendicular to the grain direction. Failure modes were characterized by pull out failure in the mode of adhesive-dowel, yet one sample failed in timber-adhesive mode. This might happened because the surface of the timber was burned by drilling machine during the drilling process. The pull-out was tested with different thickness grain direction with different dowel size with a rate of 2mm/min and the failure modes were observed after the testing of pull-out test. PRF is the adhesive used for the strengthening purposes. Resistance to the withdrawal of dowels glued-in perpendicularly was 44.2% to 53.5 % lower than that obtained for dowels glued-in parallel to the grain direction. The result shows that the dowel glued-in parallel to the grain given the higher maximum load than dowel glued-in perpendicular to the grain direction.


2013 ◽  
Vol 477-478 ◽  
pp. 972-976
Author(s):  
Fu Xiong Wan

Because of high temperature above 1000°C on fire, and Oxidation of carbon fiber at high temperature, fireproofing measure should be make to take advantage of the inorganic adhesive for beams strengthened by carbon fiber sheet bonded with the adhesive. The problem of which fireproofing material should be choose and how to make fireproofing measure needs to resolve. Fireproofing test is make for beams strengthened by carbon fiber sheet bonded with the adhesive protected by Thick-typed Fireproof Coating for steel structure (TFCSS) and Thick-typed Fireproof Coating for tunnel (TFCT). Typical damage state of the two typical coating is compared on and after fire, Temperature field of specimen is analyzed, and fireproofing effect is compared. The test results indicate that, under the protection of fireproof coating with proper structure, TFCT and TFCSS can supply effective fireproofing protection for carbon fiber sheet, but the former is inferior to the latter because the latter is easier to drop and crack in fire


2005 ◽  
Vol 297-300 ◽  
pp. 1784-1789
Author(s):  
Deok Bo Lee ◽  
Tae Won Kim ◽  
Uoo Chang Chung

Rubber-modified epoxy resins are used as a matrix material for glass and carbon-fiber composites. Mechanical properties of fiber reinforced composites depend on the interfacial shear strength between the reinforced fiber and the matrix resin. This study is focused on the interfacial shear strength in the reinforced carbon fiber and rubber-modified epoxy resin system. To evaluate interfacial shear strength between the fiber and the resin, pull-out test is performed using a microdroplet method. Based on experimental results, numerical analysis was also simulated. It is concluded that the interfacial shear strength of carbon fiber/unmodified epoxy resin system was higher than that of carbon fiber/modified epoxy resin system. The reason for decreased the interfacial shear strength of rubber-modified system is that contractive forces in neat epoxy resin acting on carbon fiber were less than those in rubber-modified epoxy resin system.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Young-Ho Kim ◽  
Jae-Yoon Kang ◽  
Hyun-Bon Koo ◽  
Dae-Jin Kim

This study proposes a new type of the perfobond shear connector, which can be used to strengthen the steel pile cap embedded into the structure foundation, and evaluates its pull-out resistance capacity by performing a test on ten specimens. Test parameters include the embedment length of the shear connector, existence of transverse rebars passing through holes in the shear connector, and their shape, size, and number. The pull-out load versus slip curve is plotted for all specimens, and their failure modes are identified. The effects of the test parameters on the peak pull-out load are examined in this work. The test results show that the perfobond shear connector proposed in this study can retain the peak pull-out load up to 6 times higher than the one without any holes. This indicates that the existence of holes in the shear connector enables the dowel action of concrete inside the hole, resulting in the improvement of the shear resistance capacity of the connector.


2010 ◽  
Vol 2 (2) ◽  
pp. 8
Author(s):  
Evy Setiawati

Rattan on frequently attacked by the powder post beetle (Tellu, 2001). The prevention of dry powder attacks is done by preservation. The increasing resistant of rattan from insect attack can be done by an environmentally friendly preservative, the Galam wood vinegar. This research  aims to determine the most effective concentration of preservative that shows the lowest attacks level of D. Farb minutus powder. The rattan used is green rattan (Calamus sp.) The concentration of preservative that are used:10%, 40%, 70% and 100%. The testing of dry powder attack  used force feedback method. The effectiveness test parameters of wood vinegar to dry powder attacks  included degree of protection Dinoderus minutus Farb. powder,  reduction percentage of rattan weight and the mortality of dry powder Dinoderus sp for toxicological testing of wood vinegar. The test results showed that the degree of protection powder in rattan growing along with the increased concentration of preservatives. The higher the concentration of  wood vinegar, the smaller the reduction of rattan weight and the higher the mortality rate of dry powder. Keywords: resistant of rattan, wood vinegar, Dinoderus minutus.


Sign in / Sign up

Export Citation Format

Share Document