scholarly journals Flexural Behavior of Double-Skin Steel Tube Beams Filled with Fiber-Reinforced Cementitious Composite and Strengthened with CFRP Sheets

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3064
Author(s):  
Ahmed Al-Nini ◽  
Ehsan Nikbakht ◽  
Agusril Syamsir ◽  
Nasir Shafiq ◽  
Bashar S. Mohammed ◽  
...  

The concrete-filled double skin steel tube (CFDST) is a more viable option compared to a concrete-filled steel tube (CFST) due to consisting a hollow section, while degradation is enhanced simply by using carbon fiber-reinforced polymer (CFRP). Hence, the stabilization of a concrete’s ductile strength needs high- performance fiber-reinforced cementitious conmposite. This study investigates the behavior of high-performance fiber-reinforced cementitious composite-filled double-skin steel tube (HPCFDST) beams strengthened longitudinally with various layers, lengths, and configurtion of CFRP sheets. The findings showed that, with increased CFRP layers, the moment capacity and flexural stiffness values of the retrofitted HPCFDST beams have significantly improved. For an instant, the moment capacity of HPCFDST beams improved by approximately 28.5% and 32.6% when they were wrapped partially along 100% with two and three layers, respectively, compared to the control beam. Moreover, the moment capacity of the HPCFDST beam using two partial layers of CFRP along 75% of its sufficient length was closed to the findings of the beam with two full CFRP layers. For energy absorption, the results showed a vast disparity. Only the two layers with a 100% full length and partial wrapping showed increasing performance over the control. Furthermore, the typical failure mode of HPCFDST beams was observed to be local buckling at the top surface near the point of loading and CFRP rapture at the bottom of effect length.

2017 ◽  
Vol 52 (2) ◽  
pp. 121-134 ◽  
Author(s):  
Duy-Liem Nguyen ◽  
Duc-Kien Thai ◽  
Dong-Joo Kim

This research investigated the effects of direct tensile response on the flexural resistance of ultra-high-performance fiber-reinforced concretes by performing sectional analysis. The correlations between direct tensile and flexural response of ultra-high-performance fiber-reinforced concretes were investigated in detail for the development of a design code of ultra-high-performance fiber-reinforced concrete flexural members as follows: (1) the tensile resistance of ultra-high-performance fiber-reinforced concretes right after first-cracking in tension should be higher than one-third of the first-cracking strength to obtain the deflection-hardening if the ultra-high-performance fiber-reinforced concretes show tensile strain-softening response; (2) the equivalent bottom strain of flexural member at the modulus of rupture is always higher than the strain capacity of ultra-high-performance fiber-reinforced concretes in tension; (3) the softening part in the direct tensile response of ultra-high-performance fiber-reinforced concretes significantly affects their flexural resistance; and (4) the moment resistance of ultra-high-performance fiber-reinforced concrete girders is more significantly influenced by the post-cracking tensile strength rather than the tensile strain capacity. Moreover, the size and geometry effects should be carefully considered in predicting the moment capacity of ultra-high-performance fiber-reinforced concrete beams.


2014 ◽  
Vol 507 ◽  
pp. 242-244
Author(s):  
Kyung Joon Shin

Cracking is one of the most important factors in the serviceability as well as durability performance of concrete structures. Recently, it was recognized that a high performance fiber-reinforced cementitious composite (HPFRCC) provides a possible solution to this inherent problem of cracking by smearing one or several dominant cracks into many distributed microcracks. The purpose of the present study is to explore the ductility characteristics of HPFRCC. The permeability of HPFRCC after subjected to different load levels were measured to identify the effect of reduced cracking among the mixtures. It was confined that the permeability of proposed mixtures was lower than that without microfibers. This means that the proposed materials can reduce the crack width greatly at the same applied loads


Sign in / Sign up

Export Citation Format

Share Document