scholarly journals Evaluation of Mechanical and Environmental Properties of Engineered Alkali-Activated Green Mortar

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4098
Author(s):  
Iman Faridmehr ◽  
Ghasan Fahim Huseien ◽  
Mohammad Hajmohammadian Baghban

Currently, alkali-activated binders using industrial wastes are considered an environmentally friendly alternative to ordinary Portland cement (OPC), which contributes to addressing the high levels of carbon dioxide (CO2) emissions and enlarging embodied energy (EE). Concretes produced from industrial wastes have shown promising environmentally-friendly features with appropriate strength and durability. From this perspective, the compressive strength (CS), CO2 emissions, and EE of four industrial powder waste materials, including fly ash (FA), palm oil fly ash (POFA), waste ceramic powder (WCP), and granulated blast-furnace slag (GBFS), were investigated as replacements for OPC. Forty-two engineered alkali-activated mix (AAM) designs with different percentages of the above-mentioned waste materials were experimentally investigated to evaluate the effect of each binder mass percentage on 28-day CS. Additionally, the effects of each industrial powder waste material on SiO2, CaO, and Al2O3 contents were investigated. The results confirm that adding FA to the samples caused a reduction of less than 26% in CS, whereas the replacement of GBFS by different levels of POFA significantly affected the compressive strength of specimens. The results also show that the AAM designs with a high volume FA provided the lowest EE and CO2 emission levels compared to other mix designs. Empirical equations were also proposed to estimate the CS, CO2 emissions, and EE of AAM designs according to their binder mass compositions.

2021 ◽  
Vol 13 (4) ◽  
pp. 2062
Author(s):  
Iman Faridmehr ◽  
Chiara Bedon ◽  
Ghasan Fahim Huseien ◽  
Mehdi Nikoo ◽  
Mohammad Hajmohammadian Baghban

Alkali-activated products composed of industrial waste materials have shown promising environmentally friendly features with appropriate strength and durability. This study explores the mechanical properties and structural morphology of ternary blended alkali-activated mortars composed of industrial waste materials, including fly ash (FA), palm oil fly ash (POFA), waste ceramic powder (WCP), and granulated blast-furnace slag (GBFS). The effect on the mechanical properties of the Al2O3, SiO2, and CaO content of each binder is investigated in 42 engineered alkali-activated mixes (AAMs). The AAMs structural morphology is first explored with the aid of X-ray diffraction, scanning electron microscopy, and Fourier-transform infrared spectroscopy measurements. Furthermore, three different algorithms are used to predict the AAMs mechanical properties. Both an optimized artificial neural network (ANN) combined with a metaheuristic Krill Herd algorithm (KHA-ANN) and an ANN-combined genetic algorithm (GA-ANN) are developed and compared with a multiple linear regression (MLR) model. The structural morphology tests confirm that the high GBFS volume in AAMs results in a high volume of hydration products and significantly improves the final mechanical properties. However, increasing POFA and WCP percentage in AAMs manifests in the rise of unreacted silicate and reduces C-S-H products that negatively affect the observed mechanical properties. Meanwhile, the mechanical features in AAMs with high-volume FA are significantly dependent on the GBFS percentage in the binder mass. It is also shown that the proposed KHA-ANN model offers satisfactory results of mechanical property predictions for AAMs, with higher accuracy than the GA-ANN or MLR methods. The final weight and bias values given by the model suggest that the KHA-ANN method can be efficiently used to design AAMs with targeted mechanical features and desired amounts of waste consumption.


Author(s):  
Nguyen Van Tuan ◽  
Pham Sy Dong ◽  
Le Trung Thanh ◽  
Nguyen Cong Thang ◽  
Yang Keun Hyeok

The addition of supplementary cementitious materials (SCMs) to replace cement, especially with a high volume (> 50%), is an effective way to reduce the environmental impact due to the CO2 emissions generated in the production of ultra-high performance concrete (UHPC). Unfortunately, no official guidelines of UHPC using a high volume of SCMs have been published up to now. This paper proposes a new method of mix design for UHPC using high volume fly ash (HVFA), that is referred to the particle packing optimization of the Compressive Packing Model proposed by F. de Larrard. This proposed method also considers the heat treatment curing duration to maximize the compressive strength of HVFA UHPC. The experimental results using this proposed mix design method show that the optimum fly ash content of 50 wt.% of binder can be used to produce HVFA UHPC with a compressive strength of over 120 MPa and 150 MPa under standard curing and heat treatment, respectively. Moreover, the embodied CO2 emissions of UHPC reduces 56.4% with addition of 50% FA.


2019 ◽  
Vol 210 ◽  
pp. 78-92 ◽  
Author(s):  
Ghasan Fahim Huseien ◽  
Abdul Rahman Mohd Sam ◽  
Kwok Wei Shah ◽  
Jahangir Mirza ◽  
Mahmood Md. Tahir

2018 ◽  
Vol 20 (2) ◽  
pp. 51
Author(s):  
Antoni . ◽  
Hendra Surya Wibawa ◽  
Djwantoro Hardjito

This study evaluates the effect of particle size distribution (PSD) of high calcium fly ash on high volume fly ash (HVFA) mortar characteristics. Four PSD variations of high calcium fly ash used were: unclassified fly ash and fly ash passing sieve No. 200, No. 325 and No. 400, respectively. The fly ash replacement ratio of the cementitious material ranged between 50-70%. The results show that with smaller fly ash particles size and higher levels of fly ash replacement, the workability of the mixture was increased with longer setting time. There was an increase in mortar compressive strength with finer fly ash particle size, compared to those with unclassified ones, with the highest strength was found at those with fly ash passing mesh No. 325. The increase was found due to better compactability of the mixture. Higher fly ash replacement reduced the mortar’s compressive strength, however, the rate was reduced when finer fly ash particles was used.


2020 ◽  
Vol 10 (3) ◽  
pp. 5728-5731 ◽  
Author(s):  
S. A. Chandio ◽  
B. A. Memon ◽  
M. Oad ◽  
F. A. Chandio ◽  
M. U. Memon

This research paper aims at investigating the effects of fly ash as cement replacement in green concrete made with partial replacement of conventional coarse aggregates with coarse aggregates from demolishing waste. Green concrete developed with waste materials is an active area of research as it helps in reducing the waste management issues and protecting the environment. Six concrete mixes were prepared using 1:2:4 ratio and demolishing waste was used in equal proportion with conventional aggregates, whereas fly ash was used from 0%-10% with an increment of 2.5%. The water-cement ratio used was equal to 0.5. Out of these mixes, one mix was prepared with all conventional aggregates and was used as the control, and one mix with 0% fly ash had only conventional and recycled aggregates. The slump test of all mixes was determined. A total of 18 cylinders of standard size were prepared and cured for 28 days. After curing the compressive strength of the specimens was evaluated under gradually increasing load until failure. It is observed that 5% replacement of cement with fly ash and 50% recycled aggregates gives better results. With this level of dosage of two waste materials, the reduction in compressive strength is about 11%.


2011 ◽  
Vol 287-290 ◽  
pp. 1237-1240
Author(s):  
Lan Fang Zhang ◽  
Rui Yan Wang

The aim of this paper is to study the influence of lithium-slag and fly ash on the workability , setting time and compressive strength of alkali-activated slag concrete. The results indicate that lithium-slag and fly-ash can ameliorate the workability, setting time and improve the compressive strength of alkali-activated slag concrete,and when 40% or 60% slag was replaced by lithium-slag or fly-ash, above 10 percent increase in 28-day compressive strength of concrete were obtained.


Sign in / Sign up

Export Citation Format

Share Document