scholarly journals Enhanced Triboelectric Performance of Modified PDMS Nanocomposite Multilayered Nanogenerators

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4156
Author(s):  
Habtamu Gebeyehu Menge ◽  
Jin Ok Kim ◽  
Yong Tae Park

Recently, triboelectric nanogenerators (TENGs) have been widely utilized to address the energy demand of portable electronic devices by harvesting electrical energy from human activities or immediate surroundings. To increase the surface charge and surface area of negative TENGs, previous studies suggested several approaches such as micro-patterned arrays, porous structures, multilayer alignment, ion injections, ground systems and mixing of high dielectric constant materials. However, the preparation processes of these nanocomposite TENGs have been found to be complex and expensive. In this work, we report a simple, efficient and inexpensive modification of poly(dimethylsiloxane) (PDMS) using graphene nanoplatelets (GNPs) fillers and a Na2CO3 template. This GNP-PDMS was chemically bonded using 3-aminopropylethoxysilane (APTES) as a linker with an electrode multilayer made by layer-by-layer deposition of polyvinyl alcohol (PVA) and poly(4-styrene-sulfonic acid) (PSS)-stabilized GNP (denoted as [PVA/GNP-PSS]n). A 33 wt.% Na2CO3 and 0.5 wt.% of GNP into a PDMS-based TENG gives an open-circuit voltage and short-circuit current density of up to ~270.2 V and ~0.44 μA/cm2, which are ~8.7 and ~3.5 times higher than those of the pristine PDMS, respectively. The higher output performance is due to (1) the improved surface charge density, 54.49 μC/m2, from oxygen functional moieties of GNP, (2) high surface roughness of the composite film, ~0.399 μm, which also increased the effective contact area, and (3) reduced charge leakage from chemical bonding of GNP-PDMS and [PVA/GNP-PSS]3 via APTES. The proposed TENG fabrication process could be useful for the development of other high-performance TENGs.

2020 ◽  
Vol 8 (19) ◽  
pp. 6513-6520 ◽  
Author(s):  
Xingliang Dong ◽  
Qing Guo ◽  
Qi Liu ◽  
Lei Zhu ◽  
Xia Guo ◽  
...  

A new non-fullerene acceptor named NTO-4F is developed. The optimal PSC based on PM6:NTO-4F achieves a PCE of 11.5% with simultaneously high open-circuit voltage of 0.99 V and short-circuit current density of 19.1 mA cm−2.


Science ◽  
2017 ◽  
Vol 356 (6345) ◽  
pp. 1376-1379 ◽  
Author(s):  
Woon Seok Yang ◽  
Byung-Wook Park ◽  
Eui Hyuk Jung ◽  
Nam Joong Jeon ◽  
Young Chan Kim ◽  
...  

The formation of a dense and uniform thin layer on the substrates is crucial for the fabrication of high-performance perovskite solar cells (PSCs) containing formamidinium with multiple cations and mixed halide anions. The concentration of defect states, which reduce a cell’s performance by decreasing the open-circuit voltage and short-circuit current density, needs to be as low as possible. We show that the introduction of additional iodide ions into the organic cation solution, which are used to form the perovskite layers through an intramolecular exchanging process, decreases the concentration of deep-level defects. The defect-engineered thin perovskite layers enable the fabrication of PSCs with a certified power conversion efficiency of 22.1% in small cells and 19.7% in 1-square-centimeter cells.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Jinghua Hu ◽  
Shiwu Hu ◽  
Yingping Yang ◽  
Shengqiang Tong ◽  
Jiejie Cheng ◽  
...  

Highly ordered TiO2 nanotube arrays (TNT arrays) were fabricated by two-step anodization process. In order to further improve the performance of DSSCs, TNT arrays were optimized by changing the anodization conditions to meet the requirements of high-performance photoanode. The photoelectric conversion properties of DSSCs based on P25/TNT arrays double-layer film with different anodization time were investigated and compared. The results show that the conversion efficiency of 4.20% was achieved in double-layer photoanode at 18 h, with an open-circuit voltage (Voc) of 0.65 V and short-circuit current density (Jsc) of 9.98 mA cm−2.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Kaixin Guo ◽  
Xu Wang ◽  
Rongfen Zhang ◽  
Zhao Fu ◽  
Liangyu Zhang ◽  
...  

AbstractMultiferroics are being studied increasingly in applications of photovoltaic devices for the carrier separation driven by polarization and magnetization. In this work, textured black silicon photovoltaic devices are fabricated with Bi6Fe1.6Co0.2Ni0.2Ti3O18/Bi2FeCrO6 (BFCNT/BFCO) multiferroic heterojunction as an absorber and graphene as an anode. The structural and optical analyses showed that the bandgap of Aurivillius-typed BFCNT and double perovskite BFCO are 1.62 ± 0.04 eV and 1.74 ± 0.04 eV respectively, meeting the requirements for the active layer in solar cells. Under the simulated AM 1.5 G illumination, the black silicon photovoltaic devices delivered a photoconversion efficiency (η) of 3.9% with open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) of 0.75 V, 10.8 mA cm−2, and 48.3%, respectively. Analyses of modulation of an applied electric and magnetic field on the photovoltaic properties revealed that both polarization and magnetization of multiferroics play an important role in tuning the built-in electric field and the transport mechanisms of charge carriers, thus providing a new idea for the design of future high-performance multiferroic oxide photovoltaic devices.


2019 ◽  
Vol 87 (1) ◽  
pp. 10101 ◽  
Author(s):  
Davoud Jalalian ◽  
Abbas Ghadimi ◽  
Azadeh Kiani

In this study, a lead-free nontoxic and hole transport material (HTM)-free perovskite solar cell (PSC) with a novel configuration of glass/FTO/ZnO/CH3NH3SnI3−xBrx/back contact has been modeled and optimized by a solar cell capacitance simulator (SCAPS). The bandgap of CH3NH3SnI3−xBrx absorber is tuned in the range of 1.3 eV to 2.15 eV by variation of the Br doping content. To make a comparison, an optimized Pb-based PSC is also modeled. By optimizing the parameters, power conversion efficiency (PCE) of 16.30%, open circuit voltage (Voc) of 1.02 V, short circuit current density (Jsc) of 22.23 mA/cm2, and fill factor (FF) of 0.72 were obtained. As compare to the reports available in the literature, these results show much improvement and can provide guidelines for production of economic and environmentally friendly PSCs with further efficiency enhancement.


Author(s):  
Naoya Yamaguchi ◽  
Hiroaki Sano ◽  
Hikaru Sawahata ◽  
Masahiro Nakano ◽  
Tetsuya TAIMA ◽  
...  

Abstract From ~1500 published journal papers on organic photovoltaics (OPVs), we extracted OPV performance parameters of power conversion efficiency (PCE), open circuit voltage (VOC) and short circuit current density (JSC) and chemical structures of photovoltaic layer materials to investigate the relation between the extracted data of OPVs accompanied by non-fullerene acceptors (NFAs). Our analysis indicated that there was a suitable range of VOC for high PCE or JSC in NFAs. We also investigated the correlation between the performance parameters and chemical structures of small molecule NFAs. Our approach may enable us to provide new design strategy for high performance OPVs.


2012 ◽  
Vol 1390 ◽  
Author(s):  
Yutaka Matsuo

ABSTRACTThis article describes design of fullerene-based electron-accepting materials to obtain high performance in organic thin-film photovoltaic devices. A 1,4-bis(dimethylphenylsilylmethyl)[60]fullerene gives higher open circuit voltage than 1,2-diadduct because of smaller π-conjugated systems, and enables columnar fullerene-core array for high electron mobility and thermal crystallization for ideal phase separation with electron-donor materials. A 56π-electron fullerene derivative possessing the dihydromethano group as the smallest carbon addend does not disrupt fullerene-fullerene contact in solid state, giving high open-circuit voltage without decreasing of short-circuit current density and fill factor.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4268
Author(s):  
Jessica de Wild ◽  
Gizem Birant ◽  
Guy Brammertz ◽  
Marc Meuris ◽  
Jef Poortmans ◽  
...  

Ultrathin Cu(In,Ga)Se2 (CIGS) absorber layers of 550 nm were grown on Ag/AlOx stacks. The addition of the stack resulted in solar cells with improved fill factor, open circuit voltage and short circuit current density. The efficiency was increased from 7% to almost 12%. Photoluminescence (PL) and time resolved PL were improved, which was attributed to the passivating properties of AlOx. A current increase of almost 2 mA/cm2 was measured, due to increased light scattering and surface roughness. With time of flight—secondary ion mass spectroscopy, the elemental profiles were measured. It was found that the Ag is incorporated through the whole CIGS layer. Secondary electron microscopic images of the Mo back revealed residuals of the Ag/AlOx stack, which was confirmed by energy dispersive X-ray spectroscopy measurements. It is assumed to induce the increased surface roughness and scattering properties. At the front, large stains are visible for the cells with the Ag/AlOx back contact. An ammonia sulfide etching step was therefore applied on the bare absorber improving the efficiency further to 11.7%. It shows the potential of utilizing an Ag/AlOx stack at the back to improve both electrical and optical properties of ultrathin CIGS solar cells.


2020 ◽  
Vol 92 (2) ◽  
pp. 20901
Author(s):  
Abdul Kuddus ◽  
Md. Ferdous Rahman ◽  
Jaker Hossain ◽  
Abu Bakar Md. Ismail

This article presents the role of Bi-layer anti-reflection coating (ARC) of TiO2/ZnO and back surface field (BSF) of V2O5 for improving the photovoltaic performance of Cadmium Sulfide (CdS) and Cadmium Telluride (CdTe) based heterojunction solar cells (HJSCs). The simulation was performed at different concentrations, thickness, defect densities of each active materials and working temperatures to optimize the most excellent structure and working conditions for achieving the highest cell performance using obtained optical and electrical parameters value from the experimental investigation on spin-coated CdS, CdTe, ZnO, TiO2 and V2O5 thin films deposited on the glass substrate. The simulation results reveal that the designed CdS/CdTe based heterojunction cell offers the highest efficiency, η of ∼25% with an enhanced open-circuit voltage, Voc of 0.811 V, short circuit current density, Jsc of 38.51 mA cm−2, fill factor, FF of 80% with bi-layer ARC and BSF. Moreover, it appears that the TiO2/ZnO bi-layer ARC, as well as ETL and V2O5 as BSF, could be highly promising materials of choice for CdS/CdTe based heterojunction solar cell.


Sign in / Sign up

Export Citation Format

Share Document