scholarly journals Strength Characteristics of Controlled Low-Strength Materials with Waste Paper Sludge Ash (WPSA) for Prevention of Sewage Pipe Damage

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4238
Author(s):  
Jeongjun Park ◽  
Gigwon Hong

In this study, the effects of the mixing conditions of waste paper sludge ash (WPSA) on the strength and bearing capacity of controlled low-strength material (CLSM) were evaluated, and the optimal mixing conditions were used to evaluate the strength characteristics of CLSM with recyclable WPSA. The strength and bearing capacity of CLSM with WPSA were evaluated using unconfined compressive strength tests and plate bearing tests, respectively. The unconfined compressive strength test results show that the optimal mixing conditions for securing 0.8–1.2 MPa of target strength under 5% of cement content conditions can be obtained when both WPSA and fly ash are used. This is because WPSA and fly ash, which act as binders, have a significant impact on overall strength when the cement content is low. The bearing capacity of weathered soil increased from 550 to 575 kPa over time, and CLSM with WPSA increased significantly, from 560 to 730 kPa. This means that the bearing capacity of CLSM with WPSA was 2.0% higher than that of weathered soil immediately after construction; furthermore, it was 27% higher at 60 days of age. In addition, the allowable bearing capacity of CLSM corresponding to the optimal mixing conditions was evaluated, and it was found that this value increased by 30.4% until 60 days of age. This increase rate was 6.7 times larger than that of weathered soil (4.5%). Therefore, based on the allowable bearing capacity calculation results, CLSM with WPSA was applied as a sewage pipe backfill material. It was found that CLSM with WPSA performed better as backfill and was more stable than soil immediately after construction. The results of this study confirm that CLSM with WPSA can be utilized as sewage pipe backfill material.

2009 ◽  
Vol 63 (12) ◽  
pp. 1465-1469 ◽  
Author(s):  
Yukio Tani

2012 ◽  
Vol 501 ◽  
pp. 34-38 ◽  
Author(s):  
Kar Keng Lim ◽  
Roslinda Shamsudin ◽  
Muhammad Azmi Abdul Hamid

In this study, paper sludge ash, a waste from pulp and paper industry was used as a filler in fabricating Plaster of Paris/paper sludge ash composites. Various percentage of paper sludge ash was used, namely 1wt.%, 3wt.%, 5wt.% and 7wt.%. The effect of paper sludge ash on the compressive strength of the Plaster of Paris was studied. The mixed powder of paper sludge ash and Plaster of Paris were form into a 6 mm diameter and 12 mm height cylindrical samples. The composites were characterized theirs density where it shows that the density decreased as the amount of paper sludge ash increased. The compressive strength of the composites also decreased from 11.67 MPa without paper sludge ash addition to 0.50 MPa at 7wt.% paper sludge ash. However, the requirement of strength for Plaster of Paris in industry is between 8.96 MPa to 20.68 MPa. From the SEM observation, sample contain higher percentage of paper sludge ash exhibited more porosity. Therefore with the addition of 1wt.% of paper sludge ash into Plaster of Paris can be a promising construction material.


Author(s):  
Shahid Bashir

Abstract: Cement production is one of the sources that emit carbon dioxide, in addition to deforestation and combustion of fossil fuels also leads to ill effects on environment. The global cement industry accounts for 7% of earth’s greenhouse gas emission. To enhance the environmental effects associated with cement manufacturing and to constantly deplore natural resources, we need to develop other binders to make the concrete industry sustainable. This work offers the option to use waste paper sludge ash as a partial replacement of cement for new concrete. In this study cement in partially replaced as 5%, 10%, 15% and 20% by waste paper sludge ash in concrete for M25 mix and tested for compressive strength, tensile strength, water absorption and dry density up to the age of 28days and compared it with conventional concrete, based on the results obtained, it is found that waste paper ash may be used as a cement replacement up to 5% by weight and the particle size is less the 90µm to prevent reduction in workability. Keywords: slump test, Compressive strength, split tensile strength, water absorption test, Waste Paper Sludge Ash Concrete, Workability.


2007 ◽  
Vol 92 (7) ◽  
pp. 1105-1111 ◽  
Author(s):  
T. Wajima ◽  
H. Ishimoto ◽  
K. Kuzawa ◽  
K. Ito ◽  
O. Tamada ◽  
...  

2014 ◽  
Vol 803 ◽  
pp. 88-92 ◽  
Author(s):  
A.R.M. Ridzuan ◽  
A.A. Khairulniza ◽  
M.A. Fadzil ◽  
J. Nurliza

Waste paper sludge ash (WPSA) is a byproduct that has potential to replace Ordinary Portland Cement (OPC) as a building material. The purpose of this study is to investigate the effect of NaOH concentration on the strength of Waste Paper Sludge Ash (WPSA)-based geopolymer mortar. Initially, the WPSA samples were been analyzed using X-ray Fluorescence (XRF) to determine the chemical composition. From the XRF analysis, the by-product WPSA containing higher amount of calcium, silica and alumina. Alkaline solution are from soluble sodium-based used in geopolymerization are combination of Sodium Hydroxide (NaOH) and Sodium Silicate (Na2SiO3). The mortars samples were cast with various concentration of NaOH and ratio of Na2SiO3 /NaOH which is 2.5. The specimens were carried out on size 50x50x50 mm cube and fresh mortar were been cured at 70 ̊c oven temperature and ambient temperature. The compressive strength tests were conducted after aging the specimen at 3, 7, 14, and 28 days. The results revealed that as the concentration of NaOH increased, the compressive strength of geopolymer mortar increases. However, the optimum NaOH concentration of geopolymer mortar is at 12M. More than 12M concentrations of NaOH were produced high porosity and decreasing the strength. Moreover, curing of fresh geopolymer mortar is performed mostly at an oven temperature compared to ambient temperature due to heat being a reaction accelerator. This paper also present on the morphology, and Energy dispersive x-Ray (EDX) composition analysis of WPSA based geopolymer mortar.


Author(s):  
E R Desfitri ◽  
F F Hanum ◽  
Y Hayakawa ◽  
S Kambara

InCIEC 2014 ◽  
2015 ◽  
pp. 439-446 ◽  
Author(s):  
Norazlan Khalid ◽  
Mazidah Mukri ◽  
Faizah Kamarudin ◽  
Abdul Halim Abdul Ghani ◽  
Mohd Fadzil Arshad ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document