scholarly journals Microstructure and Mechanical Properties of AA7075 Aluminum Alloy Fabricated by Spark Plasma Sintering (SPS)

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 430
Author(s):  
Elder Soares ◽  
Nadège Bouchonneau ◽  
Elizeth Alves ◽  
Kleber Alves ◽  
Oscar Araújo Filho ◽  
...  

AA7075 aluminum alloy is widely used for several high-technology applications for its high mechanical strength to weight ratio but is still the subject of several studies seeking a further increase in its mechanical properties. A commercial powder is used, either as-received or after ball-milling. Dense AA7075 samples are prepared in one step by Spark Plasma Sintering, at 550 °C with a holding time of 15 min and a uniaxial pressure of 100 MPa. No additional heat treatment is performed. Laser granulometry, X-ray diffraction and optical- and scanning electron microscopy show that both grain size and morphology are preserved in the dense samples, due to the relatively low temperature and short sintering time used. The samples prepared using the ball-milled powder exhibit both higher Vickers microhardness and transverse fracture strength values than those prepared using the raw powder, reflecting the finer microstructure.

2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Xiaoyong Ren ◽  
Zhijian Peng ◽  
Zhiqiang Fu ◽  
Chengbiao Wang

Ultrafine tungsten carbide-nickel (WC-Ni) cemented carbides with varied fractions of silicon carbide (SiC) nanowhisker (0–3.75 wt.%) were fabricated by spark plasma sintering at 1350°C under a uniaxial pressure of 50 MPa with the assistance of vanadium carbide (VC) and tantalum carbide (TaC) as WC grain growth inhibitors. The effects of SiC nanowhisker on the microstructure and mechanical properties of the as-prepared WC-Ni cemented carbides were investigated. X-ray diffraction analysis revealed that during spark plasma sintering (SPS) Ni may react with the applied SiC nanowhisker, forming Ni2Si and graphite. Scanning electron microscopy examination indicated that, with the addition of SiC nanowhisker, the average WC grain size decreased from 400 to 350 nm. However, with the additional fractions of SiC nanowhisker, more and more Si-rich aggregates appeared. With the increase in the added fraction of SiC nanowhisker, the Vickers hardness of the samples initially increased and then decreased, reaching its maximum of about 24.9 GPa when 0.75 wt.% SiC nanowhisker was added. However, the flexural strength of the sample gradually decreased with increasing addition fraction of SiC nanowhisker.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3973
Author(s):  
Peter Minárik ◽  
Mária Zemková ◽  
Michal Knapek ◽  
Stanislav Šašek ◽  
Jan Dittrich ◽  
...  

The spark plasma sintering (SPS) technique was employed to prepare compacts from (i) gas-atomized and (ii) attritor-milled AE42 magnesium powder. Short attritor-milling was used mainly to disrupt the MgO shell covering the powder particles and, in turn, to enhance consolidation during sintering. Compacts prepared by SPS from the milled powder featured finer microstructures than compacts consolidated from gas-atomized powder (i.e., without milling), regardless of the sintering temperatures in the range of 400–550 °C. Furthermore, the grain growth associated with the increase in the sintering temperature in these samples was less pronounced than in the samples prepared from gas-atomized particles. Consequently, the mechanical properties were significantly enhanced in the material made of milled powder. Apart from grain refinement, the improvements in mechanical performance were attributed to the synergic effect of the irregular shape of the milled particles and better consolidation due to effectively disrupted MgO shells, thus suppressing the crack formation and propagation during loading. These results suggest that relatively short milling of magnesium alloy powder can be effectively used to achieve superior mechanical properties during consolidation by SPS even at relatively low temperatures.


2017 ◽  
Vol 726 ◽  
pp. 143-147
Author(s):  
Chen Chen ◽  
Chang Chun Lv ◽  
Cheng Biao Wang ◽  
Zhi Jian Peng

In this work, we fabricated ZrB2-SiC-ZrSi2 composites containing different fractions (0.5-5 vol.%) of ZrSi2 by spark plasma sintering at 1600 °C under a uniaxial pressure of 30 MPa. The addition effect of ZrSi2 on the composition, microstructure and mechanical properties of the composites were investigated. The results indicated that the densification of ZrB2-SiC-ZrSi2 composites could be enhanced along with the increase of the added fraction of ZrSi2, with its relative density reaching the maximum of about 85.6% when 3 vol.% of ZrSi2 was added. The hardness of the composites would decrease after the addition of ZrSi2 in the range of 960-1200 HV5. The flexural strength initially increased and then decreased with the addition of ZrSi2, reaching a maximum of about 330 MPa when 3 vol.% of ZrSi2 was added.


2012 ◽  
Vol 520 ◽  
pp. 269-275 ◽  
Author(s):  
Hideaki Tsukamoto ◽  
Takahiro Kunimine ◽  
Motoko Yamada ◽  
Hisashi Sato ◽  
Yoshimi Watanabe

This study aims to investigate the microstructure and mechanical properties of Ti-ZrO2 composites and ZrO2/Ti functionally graded materials (FGMs) fabricated by spark plasma sintering (SPS). SPS has been conducted in a vacuum at 1400 oC under the uniaxial pressure of 30 MPa. Mechanical properties such as hardness and elastic modulus of Ti-ZrO2 composites have been systematically investigated using micro-Vickers and nanoindentation. The experimental results demonstrate that the mechanical properties of Ti are dramatically improved by an addition of small amount of ZrO2. There is almost no effect from the presence of Y2O3 in ZrO2 on the hardness of Ti-ZrO2 composites. ZrO2/Ti FGMs have been successfully fabricated, and mechanical properties of the FGMs have been examined.


2012 ◽  
Vol 557-559 ◽  
pp. 38-41
Author(s):  
De Zhi Zhang ◽  
Ming Li Qin ◽  
Lin Zhang ◽  
Xin Lu ◽  
Xuan Hui Qu

Nb-5 at.% W-5 at.% Mo-2 at.%Zr-2 at.% C (Nb5522) bulk alloys were prepared using blended powders or ball-milled powders via spark plasma sintering. The differences between blended powder compacts and ball milled powder compacts with respect to their density, microstructure and mechanical properties were studied. The results showed that ball milling enhances the sinterability of Nb5522 powders. After sintered by SPS at 1873 K, the milled powders achieved a near-full densification density. The SPS process favors the precipitation of (Nb, Zr)C particles.


2020 ◽  
Vol 58 (8) ◽  
pp. 533-539
Author(s):  
Ju-Hun Kim ◽  
Jeong-Han Lee ◽  
Junho Jang ◽  
Ik-Hyun Oh ◽  
Sung-Kil Hong ◽  
...  

In this study, consolidated WC-Fe compacts as a function of Fe contents were fabricated by a spark plasma sintering method, following the mixed by the ball-milled powder. Fe among the metallic binders was added to WC enhance not only the driving force of sintering process but also suppressing the grain growth. WC-Fe mixed powder samples were fabricated with 5, 10 and 15 wt.% Fe contents, and the particle sizes of the mixed powders were determined to be 2.15 to 3.15 µm, respectively. The WC-Fe mixed powders were processed by spark plasma sintering, at a sintering temperature of 1300 oC. Consequently, the relative densities of the WC-5, 10 and 15 wt.% Fe sintered-bodies were about 99.2, 99.5 and 100%, respectively. The grain sizes of the WC-5, 10 and 15 wt.% Fe sintered-bodies were about 0.92, 0.98 and 1.02 µm, respectively. The Fe particles penetrated into the WC particles by dissolving and re-precipitation, and the final sintered bodies were completely densified. The mechanical properties of the WC-Fe sintered-bodies exhibited a hardness up to 1934 kg·mm2 and a fracture toughness above 6.88 MPa·m1/2. The microstructure behavior of the WC-Fe sintered-bodies was investigated in terms of mechanical properties to examine their properties for various Fe contents. In addition, the mechanical and physical properties were compared with the reported values for other sintering-processes, i.e. HFIHS, HIP, etc.


2011 ◽  
Vol 49 (01) ◽  
pp. 40-45 ◽  
Author(s):  
Hyun-Kuk Park ◽  
Seung-Min Lee ◽  
Hee-Jun Youn ◽  
Ki-Sang Bang ◽  
Ik-Hyun Oh

Sign in / Sign up

Export Citation Format

Share Document