scholarly journals Experimental and Numerical Investigation on the Perforation Resistance of Double-Layered Metal Shield under High-Velocity Impact of Armor-Piercing Projectiles

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 626
Author(s):  
Riccardo Scazzosi ◽  
Marco Giglio ◽  
Andrea Manes

In the case of protection of transportation systems, the optimization of the shield is of practical interest to reduce the weight of such components and thus increase the payload or reduce the fuel consumption. As far as metal shields are concerned, some investigations based on numerical simulations showed that a multi-layered configuration made of layers of different metals could be a promising solution to reduce the weight of the shield. However, only a few experimental studies on this subject are available. The aim of this study is therefore to discuss whether or not a monolithic shield can be substituted by a double-layered configuration manufactured from two different metals and if such a configuration can guarantee the same perforation resistance at a lower weight. In order to answer this question, the performance of a ballistic shield constituted of a layer of high-strength steel and a layer of an aluminum alloy impacted by an armor piercing projectile was investigated in experimental tests. Furthermore, an axisymmetric finite element model was developed. The effect of the strain rate hardening parameter C and the thermal softening parameter m of the Johnson–Cook constitutive model was investigated. The numerical model was used to understand the perforation process and the energy dissipation mechanism inside the target. It was found that if the high-strength steel plate is used as a front layer, the specific ballistic energy increases by 54% with respect to the monolithic high-strength steel plate. On the other hand, the specific ballistic energy decreases if the aluminum plate is used as the front layer.

2020 ◽  
Vol 38 (2) ◽  
pp. 131s-134s
Author(s):  
Kazuya ISHIDA ◽  
Shinichi TASHIRO ◽  
Masami MIZUTANI ◽  
Manabu TANAKA

2021 ◽  
Vol 26 (2) ◽  
pp. 201-218
Author(s):  
D. Sokołowski ◽  
M. Kamiński

Abstract The main aim of this work is a computational nonlinear analysis of a high strength steel corrugated-web plate girder with a very detailed and realistic mesh including vertical ribs, all the fillet welds and supporting areas. The analysis is carried out to verify mechanical structural response under transient fire temperature conditions accounting for an efficiency and accuracy of three various transient coupled thermo-elastic models. All the resulting stress distributions, deformation modes and their time variations, critical loads and eigenfrequencies as well as failure times are compared in all these models. Nonlinearities include material, geometrical and contact phenomena up to the temperature fluctuations together with temperature-dependent constitutive relations for high strength steel. They result partially from steady state and transient experimental tests or from the additional designing rules included in Eurocodes. A fire scenario includes an application of the normative fire gas temperature curve on the bottom flange of the entire girder for a period of 180 minutes. It is computed using sequentially coupled thermo-elastic Finite Element Method analyses. These account for heat conductivity, radiation and convection. The FEM model consists of a combination of 3D hexahedral and tetrahedral solid finite elements and uses temperature-dependent material and physical parameters, whose values are taken after the experiments presented in Eurocodes. Numerical results presented here demonstrate a fundamental role of the lower flange in carrying fire loads according to this scenario and show a contribution of the ribs and of the welds to the strength of the entire structure.


2011 ◽  
Vol 328-330 ◽  
pp. 435-440
Author(s):  
Jun Liao ◽  
Lan Shan ◽  
Yan Feng

The establishment of FCEV finite element model of the subframe is based on Hypermesh platform, and a new subframe structure is designed in accordance with the stiffness and strength analysis on the original subframe in all conditions. High-strength steel materials are used to optimize the design of this new structure, which result in the optimal size. Through the comparative analysis of the strength, stiffness, mode shape and quality on new subframe and the original one, it is verified that the design of the new subframe is reasonable and feasible.


2015 ◽  
Vol 764-765 ◽  
pp. 127-131
Author(s):  
Yang Yang ◽  
Kang Min Lee ◽  
Keun Yeong Oh ◽  
Sung Bin Hong

The current local stability criteria (KBC2009, AISC2010) are enacted through theoretical and experimental studies of ordinary steels, but the mechanical properties of high strength steels are different from ordinary steels. The high strength steel in the applicability of design criteria should be needed to review because of increasing market demanding for high strength steel in the high-rise and long span buildings. In this study, stub columns of H-shaped and box section with various steel grades subjected to concentric loading were investigated, and these steels were checked to the applicability of current local stability criteria. The difference between the ordinary steel and high strength steel was compared. As a result of comparison with various steel grades, most specimens were satisfied with the design criteria, but some specimens with lower tensile strength were not reached the required strength. It is considered that the uncertainty of material was the higher when the tensile strength of material was the lower.


2011 ◽  
Vol 29 (1) ◽  
pp. 41-47 ◽  
Author(s):  
Terumasa OHNISHI ◽  
Yousuke KAWAHITO ◽  
Masami MIZUTANI ◽  
Seiji KATAYAMA

Sign in / Sign up

Export Citation Format

Share Document