scholarly journals Influence of Modified Epoxy Resins on Peroxide Curing, Mechanical Properties and Adhesion of SBR, NBR and XNBR to Silver Wires—Part II: Application of Carboxy-Containing Peroxy Oligomer (CPO)

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1285
Author(s):  
Joanna Chudzik ◽  
Dariusz M. Bieliński ◽  
Michael Bratychak ◽  
Yuriy Demchuk ◽  
Olena Astakhova ◽  
...  

This research was aimed at verifying the effect of carboxy-containing peroxy oligomer (CPO) addition on the possibility of rubber crosslinking and a subsequent adhesion of the modified rubber to silver wires. Three commonly industrially used rubbers were selected for the study: styrene–butadiene rubber (SBR), acrylonitrile–butadiene rubber (NBR) and carboxylated acrylonitrile–butadiene rubber (XNBR), together with carboxy-containing peroxy oligomer (CPO). An improvement in the adhesion of rubbers to silver wires was observed when applying the oligomeric peroxide with functional groups, with no deterioration of mechanical properties of the vulcanizates. Crosslinking synergy between dicumyl peroxide (DCP) and the modifier could hardly be observed. Nevertheless, the studies demonstrated, that to a small extent, even the CPO itself can crosslink NBR and especially XNBR, resulting in a material of notable elasticity and adhesion to silver wires.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1320
Author(s):  
Joanna Chudzik ◽  
Dariusz M. Bieliński ◽  
Michael Bratychak ◽  
Yuriy Demchuk ◽  
Olena Astakhova ◽  
...  

The research was aimed at checking the effect of monoperoxy derivative of epoxy resin (PO) on the possibility of rubber crosslinking and a subsequent adhesion of the modified rubber to silver wires. Three of the commonly industrially used rubbers were selected for the study: styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR) and carboxylated acrylonitrile-butadiene rubber (XNBR), together with the popular, commercially available Epidian 6 epoxy resin, subjected to the functionalization. An improvement in the adhesion of rubbers to silver wires was observed when using the modified resin. In some cases, an improvement in the mechanical properties of the rubber was observed, especially when the resin was used for crosslinking together with dicumyl peroxide (DCP). Crosslinking synergy between dicumyl peroxide and the modified resin could be observed especially in the case of PO applied for peroxide curing of SBR and NBR.


Author(s):  
István Zoltán Halász ◽  
Tamás Bárány

In this work the effect of cyclic butylene terephthalate (CBT) was studied on the curing, rheological, morphological and mechanical properties of styrene butadiene rubber (SBR), oil extended styrene butadiene rubber (oSBR), acrylonitrile butadiene rubbers (NBR) with various acrylonitrile (AN) content and a carboxylated acrylonitrile butadiene rubber (XNBR). The effect of CBT on the oil resistance of the NBR and XNBR based compounds was also investigated. Viscosities of the uncured compounds were significantly decreased by CBT and it also acted as a semi-active filler, effectively reinforcing the tested rubbers, therefore it is suggested to be a bifunctional additive for tested rubbers. CBT also showed to have a positive effect on the oil resistance of NBR compounds.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 519
Author(s):  
Vitalii Bezgin ◽  
Agata Dudek ◽  
Adam Gnatowski

This paper proposes and presents the chemical modification of linear hydroxyethers (LHE) with different molecular weights (380, 640, and 1830 g/mol) with the addition of three types of rubbers (polysulfide rubber (PSR), polychloroprene rubber (PCR), and styrene-butadiene rubber (SBR)). The main purpose of choosing this type of modification and the materials used was the possibility to use it in industrial settings. The modification process was conducted for a very wide range of modifier additions (rubber) per 100 g LHE. The materials obtained in the study were subjected to strength tests in order to determine the effect of the modification on functional properties. Mechanical properties of the modified materials were improved after the application of the modifier (rubber) to polyhydroxyether (up to certain modifier content). The most favorable changes in the tested materials were registered in the modification of LHE-1830 with PSR. In the case of LHE-380 and LHE-640 modified in cyclohexanol (CH) and chloroform (CF) solutions, an increase in the values of the tested properties was also obtained, but to a lesser extent than for LHE-1830. The largest changes were registered for LHE-1830 with PSR in CH solution: from 12.1 to 15.3 MPa for compressive strength tests, from 0.8 to 1.5 MPa for tensile testing, from 0.8 to 14.7 MPa for shear strength, and from 1% to 6.5% for the maximum elongation. The analysis of the available literature showed that the modification proposed by the authors has not yet been presented in any previous scientific paper.


Sign in / Sign up

Export Citation Format

Share Document