scholarly journals Characterization of Highly Filled Glass Fiber/Carbon Fiber Polyurethane Composites with the Addition of Bio-Polyol Obtained through Biomass Liquefaction

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1391
Author(s):  
Adam Olszewski ◽  
Paweł Nowak ◽  
Paulina Kosmela ◽  
Łukasz Piszczyk

This work aims to investigate the process of obtaining highly filled glass and carbon fiber composites. Composites were manufactured using previously obtained cellulose derived polyol, polymeric methylene diphenyl diisocyanate (pMDI). As a catalyst, dibutyltin dilaurate 95% and Dabco® 33-LV were used. It was found that the addition of carbon and glass fibers into the polymer matrix causes an increase in the mechanical properties such as impact and flexural strength, Young’s modulus, and hardness of the material. Moreover, the dynamic mechanical analysis (DMA) showed a significant increase in the material’s storage modulus and rigidity in a wide range of temperatures. The increase in glass transition of soft segments can be noticed due to the limitation of macromolecules mobility in the material. The thermogravimetric analysis showed a four step decomposition, with maximal degradation rate at TmaxII = 320–330 °C and TmaxIII = 395–405 °C, as well as a significant improvement of thermal stability. Analysis of the material structure using a scanning electron microscope showed the presence of material defects such as voids, fiber pull-outs, and agglomerates of both fibers.

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Fawad Inam ◽  
Doris W. Y. Wong ◽  
Manabu Kuwata ◽  
Ton Peijs

Amino-modified double wall carbon nanotube (DWCNT-NH2)/carbon fiber (CF)/epoxy hybrid micro-nanocomposite laminates were prepared by a resin infusion technique. DWCNT-NH2/epoxy nanocomposites and carbon fiber/epoxy microcomposites were made for comparison. Morphological analysis of the hybrid composites was performed using field emission scanning electron microscope. A good dispersion at low loadings of carbon nanotubes (CNTs) in epoxy matrix was achieved by a bath ultrasonication method. Mechanical characterization of the hybrid micro-nanocomposites manufactured by a resin infusion process included three-point bending, mode I interlaminar toughness, dynamic mechanical analysis, and drop-weight impact testing. The addition of small amounts of CNTs (0.025, 0.05, and 0.1 wt%) to epoxy resins for the fabrication of multiscale carbon fiber composites resulted in a maximum enhancement in flexural modulus by 35%, a 5% improvement in flexural strength, a 6% improvement in absorbed impact energy, and 23% decrease in the mode I interlaminar toughness. Hybridization of carbon fiber-reinforced epoxy using CNTs resulted in a reduction in and dampening characteristics, presumably as a result of the presence of micron-sized agglomerates.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 997 ◽  
Author(s):  
Claudio Russo ◽  
Xavier Fernández-Francos ◽  
Silvia De la Flor

Mechanical and rheological properties of novel dual-curing system based on sequential thiol-acrylate and thiol-epoxy reactions are studied with the aim of addressing the obtained materials to suitable advanced applications. The crosslinking process is studied by rheological analysis in order to determine conversion at gelation and the critical ratio. These parameters are used to discuss the intermediate material structure for each acrylate proportion and their possible application in the context of dual-curing and multi-step processing scenarios. Results from dynamo-mechanical analysis and mechanical testing demonstrate the high versatility materials under investigation and revealed a wide range of achievable final properties by simply varying the proportion between acrylate and thiol group. The intermediate stability between curing stages has been analysed in terms of their thermal and mechanical properties, showing that these materials can be stored at different temperatures for a relevant amount of time without experiencing significant effects on the processability. Experimental tests were made to visually demonstrate the versatility of these materials. Qualitative tests on the obtained materials confirm the possibility of obtaining complex shaped samples and highlight interesting shape-memory and adhesive properties.


2019 ◽  
Vol 9 (11) ◽  
pp. 2281 ◽  
Author(s):  
Suma Ayyagari ◽  
Marwan Al-Haik

Carbon fiber reinforced plastic composites (CFRPs) possess superior elastic mechanical properties. However, CFRPs lack sufficient viscoelastic performance, such as damping and creep resistance. In an effort to improve these properties, in this study, hybrid multiscale composites with various combinations of zinc oxide nanorods (ZnO) and carbon nanotubes (CNTs) were deposited at the interface of carbon fiber laminae. The viscoelastic properties of the corresponding composites were characterized via dynamic mechanical analysis (DMA) during both temperature and frequency sweeps. The creep activation energy for each composite configuration was also calculated. The DMA temperature sweep analysis reported that the composite incorporating both ZnO and CNTs exhibited the highest improvements in all viscoelastic properties. This composite also attained better creep resistance, evident by the highest activation energy. The DMA frequency sweep analysis revealed that composites incorporating a single nanofiller improves the viscoelastic properties more than the combined nanofiller composite. Despite these improvements in the viscoelastic properties, the non-uniform dispersion and agglomerations of the nanofillers affected some of the elastic properties negatively, such as the storage modulus.


2015 ◽  
Vol 1087 ◽  
pp. 251-256 ◽  
Author(s):  
Khairiah Haji Badri ◽  
Mariana Mohd Zaini ◽  
Ahmad Zhafreen Reza Ahmad Redfzi ◽  
Muhammad Syukri Ngah

The effect of recovered carbon fiber (rCF) to the burning property of polyurethane composites was investigated. The carbon fiber reinforced polymer (CFRP) in mat form was first glycolysed at 190-200 oC and characterized by FTIR, TGA, DSC and SEM analyses. The rCF was added at 0, 0.5, 1.0 and 1.5% (w/w). The polyurethane filled with recovered carbon fiber composites (PU-rCF) have also undergone burning test. The TGA analysis of PU-rCF indicated the percentage of weight loss decreased from 95.6% to 91.4% as rCF content increased. The DSC showed the glass transition temperature, Tg of PU-rCF increased with increasing addition of rCF from 56.7 to 63.0oC. The burning rate of the PU-rCF decreased from 6.1 mm∙s-1 to 2.8 mm∙s-1 with increasing rCF. The FTIR analysis confirmed that there was no chemical interaction between the rCF and PU. The addition of rCF to PU has improved the burning property of the composite.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1029 ◽  
Author(s):  
Giulia Ognibene ◽  
Alberta Latteri ◽  
Salvatore Mannino ◽  
Lorena Saitta ◽  
Giuseppe Recca ◽  
...  

This work describes the evaluation of different interlaminar veils to improve the toughening of epoxy/carbon fiber composites manufactured by resin infusion. Three commercial veils have been used in the study: two electro spun thermoplastic nanofiber (Xantulayr® from Revolution Fibres) with different areal weight, and one micro carbon fibers veil (Optiveil® from TFP). Two laboratory made veils were also manufactured by electrospinning commercial polyethersulfone (PES) tougheners (Virantage by Solvay). The veils were selected to be either soluble or non-soluble in the epoxy resin matrix during curing. The solubility was analyzed by scanning electron microscopy and dynamic mechanical analysis testing on the cured laminates. The fracture energy was evaluated by double cantilever bending (DCB) testing under Mode I loading. The insoluble thermoplastic nanofibers showed the highest toughening efficiency, followed by the soluble nanofiber veils. The carbon fiber based veil showed no toughness improvement.


Sign in / Sign up

Export Citation Format

Share Document