scholarly journals Multiscale Hybrid Micro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers

2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Fawad Inam ◽  
Doris W. Y. Wong ◽  
Manabu Kuwata ◽  
Ton Peijs

Amino-modified double wall carbon nanotube (DWCNT-NH2)/carbon fiber (CF)/epoxy hybrid micro-nanocomposite laminates were prepared by a resin infusion technique. DWCNT-NH2/epoxy nanocomposites and carbon fiber/epoxy microcomposites were made for comparison. Morphological analysis of the hybrid composites was performed using field emission scanning electron microscope. A good dispersion at low loadings of carbon nanotubes (CNTs) in epoxy matrix was achieved by a bath ultrasonication method. Mechanical characterization of the hybrid micro-nanocomposites manufactured by a resin infusion process included three-point bending, mode I interlaminar toughness, dynamic mechanical analysis, and drop-weight impact testing. The addition of small amounts of CNTs (0.025, 0.05, and 0.1 wt%) to epoxy resins for the fabrication of multiscale carbon fiber composites resulted in a maximum enhancement in flexural modulus by 35%, a 5% improvement in flexural strength, a 6% improvement in absorbed impact energy, and 23% decrease in the mode I interlaminar toughness. Hybridization of carbon fiber-reinforced epoxy using CNTs resulted in a reduction in and dampening characteristics, presumably as a result of the presence of micron-sized agglomerates.

Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1029 ◽  
Author(s):  
Giulia Ognibene ◽  
Alberta Latteri ◽  
Salvatore Mannino ◽  
Lorena Saitta ◽  
Giuseppe Recca ◽  
...  

This work describes the evaluation of different interlaminar veils to improve the toughening of epoxy/carbon fiber composites manufactured by resin infusion. Three commercial veils have been used in the study: two electro spun thermoplastic nanofiber (Xantulayr® from Revolution Fibres) with different areal weight, and one micro carbon fibers veil (Optiveil® from TFP). Two laboratory made veils were also manufactured by electrospinning commercial polyethersulfone (PES) tougheners (Virantage by Solvay). The veils were selected to be either soluble or non-soluble in the epoxy resin matrix during curing. The solubility was analyzed by scanning electron microscopy and dynamic mechanical analysis testing on the cured laminates. The fracture energy was evaluated by double cantilever bending (DCB) testing under Mode I loading. The insoluble thermoplastic nanofibers showed the highest toughening efficiency, followed by the soluble nanofiber veils. The carbon fiber based veil showed no toughness improvement.


2021 ◽  
Author(s):  
OĞUZ ERYILMAZ ◽  
Erhan SANCAK

Abstract Braiding technique is one of the most cost-effective and versatile methods to manufacture braided preforms for producing textile reinforced composites which have been utilized in a number of applications such as aerospace and automotive sectors. Carbon fiber is one of the most common reinforcing fibers having high strength and modulus used in high-performance composites. In this study, epoxy resin was modified with 3 – aminopropyltriethoxysilane (APTES) and 3 – aminopropylmethyldimethoxysilane (APMDMS) in order to enhance interfacial adhesion between matrix and carbon fiber. Composites were produced by vacuum-assisted resin infusion method (VARIM) using braided carbon fabrics and epoxy resin which was treated with silane at different concentrations (from 0.0% to 1.0%). Braided fabrics were manufactured from a high-strength standard modulus type of carbon fiber and using a radial braiding machine. According to the mechanical results, the ideal (optimum) concentration of APTES and APMDMS for the matrix modification has been around 0.5 wt% of the epoxy system. Also, the mechanical properties of APTES-treated epoxy composites are slightly higher than those of APMDMS-treated epoxy composites at the same concentration. When it is compared to silane untreated composite, 0.5 wt% of APTES/APMDMS silane treated epoxy/carbon braided composites have led to an increase of 7.71/6.16 and 7.65/6.05 % in tensile and flexural strength while the corresponding increase has resulted in 17.48/13.51 and 16.63/13.33 % in terms of tensile and flexural modulus, respectively. Impact testing results indicate that 0.5 wt% of APTES and APMDMS composites are improved 6.87 and 4.31 % compared to untreated composites, respectively.


2020 ◽  
Vol 9 (1) ◽  
pp. 1170-1182
Author(s):  
Muhammad Razlan Zakaria ◽  
Hazizan Md Akil ◽  
Mohd Firdaus Omar ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Aslina Anjang Ab Rahman ◽  
...  

AbstractThe electrospray deposition method was used to deposit carbon nanotubes (CNT) onto the surfaces of woven carbon fiber (CF) to produce woven hybrid carbon fiber–carbon nanotubes (CF–CNT). Extreme high-resolution field emission scanning electron microscopy (XHR-FESEM), X-ray diffraction (XRD), Raman spectroscopy and Fourier transform infrared spectroscopy (FT-IR) were used to analyze the woven hybrid CF–CNT. The results demonstrated that CNT was successfully and homogenously distributed on the woven CF surface. Woven hybrid CF–CNT epoxy composite laminates were then prepared and compared with woven CF epoxy composite laminates in terms of their flexural and dielectric properties. The results indicated that the flexural strength, flexural modulus and dielectric constant of the woven hybrid CF–CNT epoxy composite laminates were improved up to 19, 27 and 25%, respectively, compared with the woven CF epoxy composite laminates.


2018 ◽  
Vol 37 (18) ◽  
pp. 1131-1141 ◽  
Author(s):  
Nisrin R Abdelal ◽  
Steven L Donaldson

In the current study, the production of multifunctional hybrid-stitched composites with improved interlaminar fracture toughness and electromagnetic interference shielding effectiveness is reported. Unidirectional carbon fiber-epoxy composite laminates stitched with Kevlar, nylon, hybrid stitched with both Kevlar and nylon and unstitched were prepared using resin infusion process. Representative specimens from unstitched and stitched composites were tested using rectangular waveguide and Mode I double cantilever beam tests. The Mode I experimental results showed that composite stitched with Kevlar exhibited the highest crack initiation interlaminar fracture toughness (GIC-initiation), whereas composite stitched with nylon exhibited the highest maximum crack propagation interlaminar fracture toughness (GIC-maximum). The four-hybrid stitching patterns exhibited higher GIC-initiation than the unstitched and stitched with nylon composites and lower than stitched with Kevlar composite, whereas they had higher GIC-maximum than the unstitched and stitched with Kevlar composites, although lower than stitched with nylon composite. The electromagnetic shielding effectiveness experimental results showed that stitched composites exhibited improved shielding effectiveness compared to unstitched composites. For example, composite stitched with nylon had highest shielding effectiveness value of 52.17 dB compared by the composite stitched with Kevlar which had 40.6 dB. The four hybrid-stitched composites exhibited similar shielding effectiveness with an average value of 32.75 dB compared to the unstitched composite shielding effectiveness of 22.84 dB. The experimental results comply with the initial goal of this study to manufacture multifunctional hybrid stitching composites with combined properties between Kevlar and nylon-stitched composites.


2017 ◽  
Vol 39 (S4) ◽  
pp. E2116-E2124 ◽  
Author(s):  
Gloria Ramos-Fernandez ◽  
María Muñoz ◽  
Juan C. García-Quesada ◽  
Iluminada Rodriguez-Pastor ◽  
Ignacio Martin-Gullon

Carbon ◽  
2020 ◽  
Vol 158 ◽  
pp. 704-710 ◽  
Author(s):  
Qiang Chen ◽  
Qingyu Peng ◽  
Xu Zhao ◽  
Hao Sun ◽  
Shasha Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document