scholarly journals Effect of Air-Abraded Versus Laser-Fused Fluorapatite Glass-Ceramics on Shear Bond Strength of Repair Materials to Zirconia

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1468
Author(s):  
Alaaeldin Elraggal ◽  
Nikolaos Silikas

Zirconia repair could be a feasible alternative option to total replacement in fractured zirconia-based restorations. Maximising the bond strength by enriching zirconia with fluorapatite glass-ceramics (FGC) powder has been addressed and compared to other surface treatments. Besides resin composite, other repair materials have been proposed and compared. Zirconia blocks received different surface treatments (A—sandblasting with tribochemical silica-coated alumina (CoJet). B—sandblasting with FGC powder (FGC), C—fluorapatite glass-ceramic coat+ neodymium-doped yttrium aluminum garnet laser irradiation (FGC + Nd: YAG), and D—no surface treatment). The surface roughness, topography, and crystallinity were investigated by a profilometer, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses, respectively. For each surface treatment, three repair materials (feldspathic porcelain, lithium disilicate, and resin composite) were bonded to zirconia with 10, Methacryloyloxydecyl dihydrogen phosphate (MDP)–Monobond Plus/ Multilink Automix. Bonded specimens were thermocycled for 10,000 cycles and tested for shear bond strength (SBS) at a speed of 1 mm/min, followed by the analysis of the mode of failure. FGC + Nd: YAG laser group reported the highest surface roughness and monoclinic content compared to CoJet, FGC, and control groups. The highest mean SBS was found in FGC-blasted zirconia, followed by FGC + Nd: YAG laser and CoJet treated groups. However, the lowest SBS was found in control groups regardless of the repair material. Sandblasting zirconia with FGC powder increased SBS of resin to zirconia with lower monoclinic phase transformation compared to FGC + Nd: YAG or CoJet groups.

Author(s):  
Siripan Simasetha ◽  
Awiruth Klaisiri ◽  
Tool Sriamporn ◽  
Kraisorn Sappayatosok ◽  
Niyom Thamrongananskul

Abstract Objective The study aimed to evaluate the shear bond strength (SBS) of lithium disilicate glass-ceramic (LDGC) and resin cement (RC) using different surface treatments. Materials and Methods LDGC blocks (Vintage LD Press) were prepared, etched with 4.5% hydrofluoric acid, and randomly divided into seven groups (n = 10), depending on the surface treatments. The groups were divided as follows: 1) no surface treatment (control), 2) Silane Primer (KS), 3) Signum Ceramic Bond I (SGI), 4) Signum Ceramic Bond I/Signum Ceramic Bond II (SGI/SGII), 5) experimental silane (EXP), 6) experimental silane/Signum Ceramic Bond II (EXP/SGII), and 7) Experimental/Adper Scotchbond Multi-purpose Adhesive (EXP/ADP). The specimens were cemented to resin composite blocks with resin cement and stored in water at 37 °C for 24 hours. The specimens underwent 5,000 thermal cycles and were subjected to the SBS test. Mode of failure was evaluated under the stereo microscope. Statistical Analysis Data were analyzed with Welch ANOVA and Games-Howell post hoc tests (α = 0.05). Results The highest mean SBS showed in group EXP/ADP (45.49 ± 3.37 MPa); however, this was not significantly different from group EXP/SGII (41.38 ± 2.17 MPa) (p ≥ 0.05). The lowest SBS was shown in the control group (18.36 ± 0.69 MPa). This was not significantly different from group KS (20.17 ± 1.10 MPa) (p ≥ 0.05). Conclusions The different surface treatments significantly affected the SBS value between LDGC and RC. The application of pure silane coupling agent with or without the application of an adhesive improved the SBS value and bond quality.


2013 ◽  
Vol 38 (3) ◽  
pp. E58-E66 ◽  
Author(s):  
SD Cho ◽  
P Rajitrangson ◽  
BA Matis ◽  
JA Platt

SUMMARY Aged resin composites have a limited number of carbon-carbon double bonds to adhere to a new layer of resin. Study objectives were to 1) evaluate various surface treatments on repaired shear bond strength between aged and new resin composites and 2) to assess the influence of a silane coupling agent after surface treatments. Methods Eighty disk-shape resin composite specimens were fabricated and thermocycled 5000 times prior to surface treatment. Specimens were randomly assigned to one of the three surface treatment groups (n=20): 1) air abrasion with 50-μm aluminum oxide, 2) tribochemical silica coating (CoJet), or 3) Er,Cr:YSGG (erbium, chromium: yttrium-scandium-gallium-garnet) laser or to a no-treatment control group (n=20). Specimens were etched with 35% phosphoric acid, rinsed, and dried. Each group was divided into two subgroups (n=10): A) no silanization and B) with silanization. The adhesive agent was applied and new resin composite was bonded to each conditioned surface. Shear bond strength was evaluated and data analyzed using two-way analysis of variance (ANOVA). Results Air abrasion with 50-μm aluminum oxide showed significantly higher repair bond strength than the Er,Cr:YSGG laser and control groups. Air abrasion with 50-μm aluminum oxide was not significantly different from tribochemical silica coating. Tribochemical silica coating had significantly higher repair bond strength than Er,Cr:YSGG laser and the control. Er,Cr:YSGG laser and the control did not have significantly different repair bond strengths. Silanization had no influence on repair bond strength for any of the surface treatment methods. Conclusion Air abrasion with 50-μm aluminum oxide and tribochemical silica followed by the application of bonding agent provided the highest repair shear bond strength values, suggesting that they might be adequate methods to improve the quality of repairs of resin composites.


2020 ◽  
Vol 29 ◽  
pp. 2633366X1989996
Author(s):  
Akin Ceyda ◽  
Sevimay Müjde ◽  
Ozyilmaz Ozgun Yusuf ◽  
Cokuk Neslihan

Objective: The shear bond strength (SBS) of composite resin cement and color change to enamel bleached with two different concentrations of hydrogen peroxide (HP) bleaching agents in combination with two different laser applications was evaluated. Materials and Methods: The Er: YAG laser ( λ = 2940 nm) and diode laser ( λ = 940 nm) were used with the bleaching agent consisting of 40% HP opalescence (Opalescence Xtra Boost, Ulgen, South Jordan, UT, USA) and 35% HP whiteness (Whiteness HP Blue, FGM Dental Products, Joinville, SC, Brazil). Seventy-two human extracted teeth were randomly divided into two groups: For the 40% HP treatment, 36 specimens were divided into three subgroups: (1) HP agent with no laser treatment, (2) HP agent treated with Er: YAG laser, and (3) HP agent treated with diode laser. The same protocol was performed for the 35% HP. The color change was analyzed using the Commission Internationale de l’ Eclairage (CIE) L* a* b* system and surface roughness was analyzed by an atomic force microscope. The specimens were bonded with resin cement and a shear bond test was performed at 0.5 mm/min. The failure surfaces were evaluated using scanning electron microscope analysis. Results: Δ E value of the 40% HP + Er: YAG group was significantly higher than the other groups while diode groups showed the lower SBS values than the control groups ( p < 0.05). Conclusions: The Er: YAG laser with 40% HP may be effective for the brighter teeth and the use of Er: YAG laser produced higher adhesion between enamel and resin cement than diode laser.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Mustafa Mehmet Özarslan ◽  
Özlem Üstün ◽  
Ulviye Sebnem Buyukkaplan ◽  
Çağatay Barutcigil ◽  
Nurullah Türker ◽  
...  

Adult orthodontics may confront problems related to the bonding performance of orthodontic brackets to new generation restorative materials used for crown or laminate restorations. The aim of the present study was to investigate the shear bond strength of ceramic brackets to two new generation CAD/CAM interpenetrating network composite and nanoceramic composite after different surface treatments. Er,Cr:YSGG Laser, hydrofluoric acid (9%), sandblasting (50 μm Al2O3), and silane were applied to the surfaces of 120 CAD/CAM specimens with 2 mm thickness and then ceramic brackets were bonded to the treated surfaces of the specimens. Bond strength was evaluated using the shear bond strength test. According to the results, CAD/CAM block types and surface treatment methods have significant effects on shear bond strength. The lowest bond strength values were found in the specimens treated with silane (3.35 ± 2.09 MPa) and highest values were found in the specimens treated with sandblast (8.92 ± 2.77 MPa). Sandblasting and hydrofluoric acid surface treatment led to the most durable bonds for the two types of CAD/CAM blocks in the present study. In conclusion, different surface treatments affect the shear bond strength of ceramic brackets to CAD/CAM interpenetrating network composite and nanoceramic composite. Among the evaluated treatments, sandblasting and hydrofluoric acid application resulted in sufficient bonding strength to ceramic brackets for both of the CAD/CAM materials.


2017 ◽  
Vol 22 (4) ◽  
pp. 47-52 ◽  
Author(s):  
Marina Cumerlato ◽  
Eduardo Martinelli de Lima ◽  
Leandro Berni Osorio ◽  
Eduardo Gonçalves Mota ◽  
Luciane Macedo de Menezes ◽  
...  

ABSTRACT Objective: The aim of this in vitro study was to evaluate and compare the effects of grinding, drilling, sandblasting, and ageing prefabricated teeth (PfT) on the shear bond strength (SBS) of orthodontic brackets, as well as the effects of surface treatments on the adhesive remnant index (ARI). Methods: One-hundred-ninety-two PfT were divided into four groups (n = 48): Group 1, no surface treatment was done; Group 2, grinding was performed with a cylindrical diamond bur; Group 3, two drillings were done with a spherical diamond bur; Group 4, sandblasting was performed with 50-µm aluminum oxide. Before the experiment, half of the samples stayed immersed in distilled water at 37oC for 90 days. Brackets were bonded with Transbond XT and shear strength tests were carried out using a universal testing machine. SBS were compared by surface treatment and by ageing with two-way ANOVA, followed by Tukey’s test. ARI scores were compared between surface treatments with Kruskal-Wallis test followed by Dunn’s test. Results: Surface treatments on PfT enhanced SBS of brackets (p< 0.01), result not observed with ageing (p= 0.45). Groups II, III, and IV showed higher SBS and greater ARI than the Group 1 (p< 0.05). SBS was greater in the groups 3 and 4 (drilling, sandblasting) than in the Group 2 (grinding) (p< 0.05). SBS and ARI showed a positive correlation (Spearman’s R2= 0.57; p< 0.05). Conclusion: Surface treatment on PfT enhanced SBS of brackets, however ageing did not show any relevance. Sandblasting and drilling showed greater SBS than grinding. There was a positive correlation between SBS and ARI.


2021 ◽  
Vol 12 ◽  
pp. e2-e2
Author(s):  
Abdulsatar M Abdulsatar ◽  
Basima M A Hussein ◽  
Ali M Mahmood

Introduction: This study was performed to compare the effect of Fractional CO2 laser or Q switched Nd:YAG laser of surface treatment on the shear bond strength of zirconia-porcelain interface. Methods: Fractional CO2 laser at 30 W, 2 ms, time interval 1 ms, distance between spots 0.3 mm, and number of scans is (4) or Q switched Nd:YAG laser at 30 J/mm2 and 10 Hz were used to assess the shear bond strength of zirconia to porcelain. Pre-sintered zirconia specimens were divided into three groups (n = 10) according to the surface treatment technique used: (a) untreated (Control) group; (b) CO2 group; (c) Nd:YAG group. All samples were then sintered and veneered with porcelain according to the manufacturer’s instructions. Surface morphology was examined using a light microscope, the surface roughness test was done by the atomic force microscope (AFM), and the shear bond strength (SBS) test was done by a universal testing machine. After debonding following shear bond test, zirconia surfaces were examined under a light microscope to determine their fracture mode. Results: The Results of this study showed that the lowest SBS was recorded in the control group, and the highest SBS recorded in the Fractional CO2 group, followed by the Q switched Nd:YAG laser group, as well as an increase in surface roughness and change in the morphology and mode of failure in the experimental groups . Conclusion: This study shows that Fractional CO2 laser and Q switched Nd:YAG laser treatments significantly increase the bond strength than untreated zirconia .


Sign in / Sign up

Export Citation Format

Share Document