scholarly journals Detailed Inspection of γ-ray, Fast and Thermal Neutrons Shielding Competence of Calcium Oxide or Strontium Oxide Comprising Bismuth Borate Glasses

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2265
Author(s):  
Gandham Lakshminarayana ◽  
Youssef Elmahroug ◽  
Ashok Kumar ◽  
Huseyin Ozan Tekin ◽  
Najeh Rekik ◽  
...  

For both the B2O3-Bi2O3-CaO and B2O3-Bi2O3-SrO glass systems, γ-ray and neutron attenuation qualities were evaluated. Utilizing the Phy-X/PSD program, within the 0.015–15 MeV energy range, linear attenuation coefficients (µ) and mass attenuation coefficients (μ/ρ) were calculated, and the attained μ/ρ quantities match well with respective simulation results computed by MCNPX, Geant4, and Penelope codes. Instead of B2O3/CaO or B2O3/SrO, the Bi2O3 addition causes improved γ-ray shielding competence, i.e., rise in effective atomic number (Zeff) and a fall in half-value layer (HVL), tenth-value layer (TVL), and mean free path (MFP). Exposure buildup factors (EBFs) and energy absorption buildup factors (EABFs) were derived using a geometric progression (G–P) fitting approach at 1–40 mfp penetration depths (PDs), within the 0.015–15 MeV range. Computed radiation protection efficiency (RPE) values confirm their excellent capacity for lower energy photons shielding. Comparably greater density (7.59 g/cm3), larger μ, μ/ρ, Zeff, equivalent atomic number (Zeq), and RPE, with the lowest HVL, TVL, MFP, EBFs, and EABFs derived for 30B2O3-60Bi2O3-10SrO (mol%) glass suggest it as an excellent γ-ray attenuator. Additionally, 30B2O3-60Bi2O3-10SrO (mol%) glass holds a commensurably bigger macroscopic removal cross-section for fast neutrons (ΣR) (=0.1199 cm−1), obtained by applying Phy-X/PSD for fast neutrons shielding, owing to the presence of larger wt% of ‘Bi’ (80.6813 wt%) and moderate ‘B’ (2.0869 wt%) elements in it. 70B2O3-5Bi2O3-25CaO (mol%) sample (B: 17.5887 wt%, Bi: 24.2855 wt%, Ca: 11.6436 wt%, and O: 46.4821 wt%) shows high potentiality for thermal or slow neutrons and intermediate energy neutrons capture or absorption due to comprised high wt% of ‘B’ element in it.

2018 ◽  
Vol 107 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Mohammed I. Sayyed ◽  
Ferdi Akman ◽  
Veysel Turan ◽  
Aslı Araz

Abstract The aim of the present work is to investigate the radiation absorption capacity of different soil samples in Turkey. For this purpose, we used a γ ray transmission geometry to measure the mass attenuation coefficients of eight soil samples collected between Bingöl city and Solhan district, Turkey at different γ-ray energies in the range of 13.94–88.04 keV. The radioactive sources utilized in the experiment were 241Am, 109Cd and 133Ba. FFAST and WinXCOM programs were used to evaluate the theoretical mass attenuation coefficients values of the selected soil samples. There is a good agreement between experimental and theoretical results. Additionally, the mass attenuation coefficients values used to evaluate different radiation shielding parameters such as effective atomic number, half value layer and mean free path. The variation of shielding parameters was examined for soil composition and photon energy. The obtained results revealed that S6 soil sample is the best soil in terms of shielding effectiveness among all the collected soils due to lower values for half value layer and mean free path. The effective removal cross-section (ΣR) of fast neutrons for the collected soils was also computed to examine neutrons shielding properties of the soil samples. It is found that the ΣR values for the soil samples are almost constant and lie within the range (0.04286–0.04949 cm−1).


Author(s):  
Mustafa Mohammad Rafiei ◽  
Sara Parsaei ◽  
Parminder Kaur ◽  
Kanwar J Singh ◽  
Mehmet Büyükyıldız ◽  
...  

Abstract The attenuation coefficients are important input values in estimating not only the dose and exposure in radiotherapy and medical imaging, but also in the proper design of photon shields. While studies are widely available above 1 keV, the attenuation coefficients of human tissues for photon energies less than 1 keV have not been studied yet. In this study, the attenuation coefficients of water and some human tissues were estimated for low energy photons using the MCNP6.1 code in the energy region 0.1 keV-1 keV. Mass attenuation coefficients were estimated at photon energies of 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 and 1000 eV for water and ten human tissues (Soft, Breast, Lung, Bone, Brain, Eye lens, Ovary, Skin, Thyroid and Prostate). Results were compared with those available in literature and a fairly good agreement has been obtained. These data were then used to calculate the mean free path, half value layer, tenth value layer, effective atomic number and specific gamma-ray constant (useful for calculation of dose rate) as well. Moreover, for comparison the effective atomic number of the water has been obtained using the results of this work and using the data available in NIST database from 0.1 to 1 keV. In addition, the human tissues were compared with some tissue equivalent materials in terms of effective atomic number and specific gamma-ray constant to study the tissue equivalency from the results, the muscle-equivalent liquid with sucrose has been found to be the best tissue equivalent material for soft tissue, eye lens and brain with relative difference below 4.1%.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ashok Kumar ◽  
Anisha Jain ◽  
M. I. Sayyed ◽  
Farah Laariedh ◽  
K. A. Mahmoud ◽  
...  

AbstractNuclear radiation shielding capabilities for a glass series 20Bi2O3 − xPbO − (80 − 2x)B2O3 − xGeO2 (where x = 5, 10, 20, and 30 mol%) have been investigated using the Phy-X/PSD software and Monte Carlo N-Particle transport code. The mass attenuation coefficients (μm) of selected samples have been estimated through XCOM dependent Phy-X/PSD program and MCNP-5 code in the photon-energy range 0.015–15 MeV. So obtained μm values are used to calculate other γ-ray shielding parameters such as half-value layer (HVL), mean-free-path (MFP), etc. The calculated μm values were found to be 71.20 cm2/g, 76.03 cm2/g, 84.24 cm2/g, and 90.94 cm2/g for four glasses S1 to S4, respectively. The effective atomic number (Zeff)values vary between 69.87 and 17.11 for S1 or 75.66 and 29.11 for S4 over 0.05–15 MeV of photon-energy. Sample S4, which has a larger PbO/GeO2 of 30 mol% in the bismuth-borate glass, possesses the lowest MFP and HVL, providing higher radiation protection efficiency compared to all other combinations. It shows outperformance while compared the calculated parameters (HVL and MFP) with the commercial shielding glasses, different alloys, polymers, standard shielding concretes, and ceramics. Geometric Progression (G-P) was applied for evaluating the energy absorption and exposure buildup factors at energies 0.015–15 MeV with penetration depths up to 40 mfp. The buildup factors showed dependence on the MFP and photon-energy as well. The studied samples' neutron shielding behavior was also evaluated by calculating the fast neutron removal cross-section (ΣR), i.e. found to be 0.139 cm−1 for S1, 0.133 cm−1 for S2, 0.128 cm−1 for S3, and 0.12 cm−1 for S4. The results reveal a great potential for using a glass composite sample S4 in radiation protection applications.


2020 ◽  
Vol 95 (8) ◽  
pp. 085301 ◽  
Author(s):  
Zainab Alsayed ◽  
Mohamed. S. Badawi ◽  
Ramadan Awad ◽  
Ahmed. M. El-Khatib ◽  
Abouzeid. A. Thabet

2021 ◽  
Vol 11 (7) ◽  
pp. 3035
Author(s):  
H. O. Tekin ◽  
Shams A. M. Issa ◽  
G. Kilic ◽  
Hesham M. H. Zakaly ◽  
N. Tarhan ◽  
...  

This study aimed to perform an extensive characterization of a 74.75TeO2–0.25V2O5–(25 − x)B2O3-xNd2O3 glass system with (x = 0, 0.5, 1.0, and 1.5 mol%) for radiation shielding properties. Linear and mass attenuation coefficients were determined using Phy-X PSD software and compared with the simulation using Monte Carlo software MCNPX (version 2.7.0). Half value layer, mean free path, tenth value layer, effective atomic number, exposure buildup factor, and energy absorption buildup factors of VTBNd0.0, VTBNd0.5, VTBNd1.0, and VTBNd1.5 glasses were determined, respectively. The results showed that boron (III) oxide and neodymium (III) oxide substitution has an obvious impact on the gamma ray attenuation properties of the studied glasses. It can be concluded that the VTBNd1.5 sample with the highest content of neodymium (III) oxide (1.5 mol%) is the superior sample for shielding of gamma radiation in the investigated energy range.


2016 ◽  
Vol 31 (4) ◽  
pp. 339-348
Author(s):  
Vishvanath Singh ◽  
Nagappa Badiger ◽  
Leif Gerward

Mass attenuation coefficients, mean free paths and exposure buildup factors have been used to characterize the shielding efficiency of metal hydrides and borohydrides, with high density of hydrogen. Gamma ray exposure buildup factors were computed using five-parameter geometric progression fitting at energies 0.015 MeV to15 MeV, and for penetration depths up to 40 mean free paths. Fast-neutron shielding efficiency has been characterized by the effective neutron removal cross-section. It is shown that ZrH2 and VH2 are very good shielding materials for gamma rays and fast neutrons due to their suitable combination of low- and high-Z elements. The present work should be useful for the selection and design of blankets and shielding, and for dose evaluation for components in fusion reactors.


2020 ◽  
Vol 38 ◽  
pp. 93-99
Author(s):  
Hiroshi Sakurai ◽  
Kazushi Hoshi ◽  
Yosuke Harasawa ◽  
Daiki Ono ◽  
Kun Zhang ◽  
...  

We developed the photon counting CT system by using a conventional laboratory X-ray source and a CdTe line sensor. Attenuation coefficients were obtained from the measured CT image data. Our suggested method for deriving the electron density and effective atomic number from the measured attenuation coefficients was tested experimentally. The accuracy of the electron densities and effective atomic numbers are about <5 % (the averages of absolute values are 2.6 % and 3.1 %, respectively) for material of 6< Z and Zeff <13. Our suggested simple method, in which we do not need the exact source X-ray spectrum and detector response function, achieves comparable accuracy to the previous reports.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4330
Author(s):  
Ghada ALMisned ◽  
Huseyin Ozan Tekin ◽  
Shams A. M. Issa ◽  
Miray Çelikbilek Ersundu ◽  
Ali Erçin Ersundu ◽  
...  

The radiation shielding characteristics of samples from two TeO2 and Sb2O3-based basic glass groups were investigated in this research. TeO2 and Sb2O3-based glasses were determined in the research as six samples with a composition of 10WO3-(x)MoO3-(90 − x)(TeO2/Sb2O3) (x = 10, 20, 30). A general purpose MCNPX Monte Carlo code and Phy-X/PSD platform were used to estimate the radiation shielding characteristics. Accordingly, the linear and mass attenuation coefficients, half value layer, mean free path, variation of the effective atomic number with photon energy, exposure and built-up energy factors, and effective removal cross-section values were determined. It was determined that the results that were produced using the two different techniques were consistent. Based on the collected data, the most remarkable findings were found to be associated with the sample classified as T80 (10WO3 + 10MoO3 + 80TeO2). The current study showed that material density was as equally important as composition in modifying radiation shielding characteristics. With the T80 sample with the greatest density (5.61 g/cm3) achieving the best results. Additionally, the acquired findings were compared to the radiation shielding characteristics of various glass and concrete materials. Increasing the quantity of MoO3 additive, a known heavy metal oxide, in these TeO2 and Sb2O3-based glasses may have a detrimental impact on the change in radiation shielding characteristics.


2019 ◽  
Vol 107 (6) ◽  
pp. 517-522 ◽  
Author(s):  
M. Almatari

Abstract Radiations are widely used in hospitals and health services in radiotherapy and molecular imaging using x-ray and gamma radiation which considered as the most penetrating radiations and very difficult to shield. In this study, the radiation shielding properties of different zinc oxide (ZnO) concentrations of the (95-x)TeO2-5TiO2-xZnO (x=5, 10, 15, 20, 25, 30 and 40 mol%) glass system was investigated to be introduced as a new transparency effective shielding material. In order to study shielding properties, mass attenuation coefficients in the energy range of 0.015–15 MeV photon energies for the current glass system were calculated using ParShield software. Moreover, half value layer, mean free path and effective atomic number were evaluated using the obtained attenuation coefficient. The results indicated that if ZnO was added to the current glass system the mass attenuation coefficient will be decreased as well as effective atomic number values. The highest mass attenuation coefficient at all energies was found to be in TT5Z5 glass sample as well as the effective atomic number value.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ertuğrul Bursalıoğlu ◽  
Begüm Balkan ◽  
H. Birtan Kavanoz ◽  
Mustafa Okutan ◽  
Orhan İçelli ◽  
...  

The effective atomic number and effective electron density in amino acids are of significant interest due to their use in various applications. The energy absorption buildup factors, exposure buildup factors, effective atomic numbers, and electron densities of essential amino acids such as Leucine (C6H13NO2), Lysine (C6H14N2O2), Methionine (C5H11NO2S), Phenylalanine (C9H11NO2), Threonine (C4H9NO3), Tryptophan (C11H12N2O2), Valine (C5H11NO2), Arginine (C6H14N4O2), and Histidine (C6H9N3O2) were determined theoretically in the energy range 0.015–15 MeV.


Sign in / Sign up

Export Citation Format

Share Document