scholarly journals Fabrication of Electrochemical Biosensor Based on Titanium Dioxide Nanotubes and Silver Nanoparticles for Heat Shock Protein 70 Detection

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3767
Author(s):  
Marta Nycz ◽  
Katarzyna Arkusz ◽  
Dorota G. Pijanowska

This paper presents the fabrication methodology of an electrochemical biosensor for the detection of heat shock protein 70 (HSP70) as a potential tumor marker with high diagnostic sensitivity. The sensor substrate was a composite based on titanium dioxide nanotubes (TNTs) and silver nanoparticles (AgNPs) produced directly on TNTs by electrodeposition, to which anti-HSP70 antibodies were attached by covalent functionalization. This manuscript contains a detailed description of the production, modification, and the complete characteristics of the material used as a biosensor platform. As-formed TNTs, annealed TNTs, and the final sensor platform—AgNPs/TNTs, were tested using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction analysis (XRD). In addition, open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) of these substrates were used to assess the influence of TNTs modification on their electrochemical characteristics. The EIS technique was used to monitor the functionalization steps of the AgNPs/TNTs electrode and the interaction between anti-HSP70 and HSP70. The produced composite was characterized by high purity, and electrical conductivity improved more than twice compared to unmodified TNTs. The linear detection range of HSP70 of the developed biosensor was in the concentration range from 0.1 to 100 ng/mL.

2010 ◽  
Vol 242 (3) ◽  
pp. 263-269 ◽  
Author(s):  
Maqusood Ahamed ◽  
Ryan Posgai ◽  
Timothy J. Gorey ◽  
Mark Nielsen ◽  
Saber M. Hussain ◽  
...  

1999 ◽  
Vol 55 (6) ◽  
pp. 1234-1236 ◽  
Author(s):  
Bingdong Sha ◽  
Douglas Cyr

Heat-shock protein 70 (Hsp70), one of the major molecular chaperones, has been shown to play a central role in many cellular processes. Heat-shock protein 40 (Hsp40) works as a co-chaperone for Hsp70. Hsp40, bound by unfolded polypeptide, can interact directly with Hsp70 to stimulate the ATPase activity of Hsp70. Hsp40 can also bind to unfolded polypeptides and prevent them from aggregating in vitro, thus acting as an independent molecular chaperone. The S. cerevisiae Hsp40 Sis1 C-terminal peptide-binding domain has been crystallized. The crystals diffract to 2.7 Å and belong to space group P41212 or P43212 with a = 73.63, c = 80.16 Å. The structure determination by the MAD method is under way.


2001 ◽  
Vol 120 (5) ◽  
pp. A152-A152
Author(s):  
H SUZUKI ◽  
S NAGAHASHI ◽  
M MIYAZAWA ◽  
M MORI ◽  
H NAGATA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document