goblet cell hyperplasia
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 20)

H-INDEX

35
(FIVE YEARS 3)

Author(s):  
Nancy M Walker ◽  
Jinghua Liu ◽  
Sarah M Young ◽  
Rowena A Woode ◽  
Lane L. Clarke

Goblet cell hyperplasia is an important manifestation of cystic fibrosis (CF) disease in epithelial-lined organs. Explants of CF airway epithelium show normalization of goblet cell numbers; therefore we hypothesized that small intestinal enteroids from Cftr knockout (KO) mice would not exhibit goblet cell hyperplasia. Toll-like receptors 2 and 4 (Tlr2, Tlr4) were investigated as markers of inflammation and influence on goblet cell differentiation. Ex vivo studies found goblet cell hyperplasia in Cftr KO jejunum as compared to wild-type (WT). IL-13, SAM pointed domain-containing ETS transcription factor (Spdef), Tlr2 and Tlr4 protein expression was increased in Cftr KO intestine relative to WT. In contrast, WT and Cftr KO enteroids did not exhibit differences in basal or IL-13-stimulated goblet cell numbers, or differences in expression of Tlr2, Tlr4 and Spdef. Ileal goblet cell numbers in Cftr KO/Tlr4 KO and Cftr KO/Tlr2 KO mice were not different from Cftr KO mice, but enumeration was confounded by altered mucosal morphology. Treatment with Tlr4 agonist LPS did not affect goblet cell numbers in WT or Cftr KO enteroids, whereas the Tlr2 agonist Pam3Csk4 stimulated goblet cell hyperplasia in both genotypes. Pam3Csk4 stimulation of goblet cell numbers was associated with suppression of Notch1 and Neurog3 expression and upregulated determinants of goblet cell differentiation. We conclude that goblet cell hyperplasia and inflammation of the Cftr KO small intestine are not exhibited by enteroids, indicating that this manifestation of CF intestinal disease is not epithelial-automatous but secondary to the altered CF intestinal environment.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Huanhuan Zhang ◽  
Wenying Yu ◽  
Liting Ji ◽  
Yusen Zhong ◽  
Yiyou Lin ◽  
...  

Mucus hypersecretion is a hallmark of chronic obstructive pulmonary disease (COPD) and is associated with increasing sputum production and declining pulmonary function. Therefore, reducing mucus secretion can be a new therapeutic opportunity for preventing COPD. The Guifu Dihuang pill (GFDHP) is a classical Chinese medicine and has been used as an immunoregulator for treatment of kidney yang deficiency syndrome, including hypothyroidism, adrenocortical hypofunction, chronic bronchitis, and COPD, for more than 2000 years. However, the protective effects and mechanisms of GFDHP against mucus hypersecretion in COPD remain obscure. The aim of the present study was to explore the inhibitory effects of GFDHP on lipopolysaccharide/cigarette smoke- (LPS/CS-) induced Mucin5ac (Muc5ac) overproduction and airway goblet cell hyperplasia in mice. The mice were randomly assigned into 6 groups: control, model, GFDHP-L, GFDHP-M, GFDHP-H, and dexamethasone. The mice were given LPS twice through intranasal inhalation and then exposed to CS daily for 6 weeks. Three doses of GFDHP were orally administered daily during the last 3 weeks of the experiment. Pulmonary function was examined with an EMKA pulmonary system, and pulmonary hyperpermeability and lung damage were evaluated with an in vivo imaging system. Inflammatory cells and cytokines in bronchoalveolar lavage fluid (BALF) were detected with a cell count analyzer and though ELISA analysis, respectively. Lung pathological changes and airway goblet cell hyperplasia were analyzed with hematoxylin and eosin and Alcian blue periodic acid Schiff staining. The protein expression levels of Muc5ac and extracellular signal-regulated kinase (ERK)-specificity protein1 (SP1) signaling pathway were measured with Western blot and immunohistochemistry. The results demonstrated that GFDHP improved pulmonary function and suppressed mouse pulmonary hyperpermeability and edema. GFDHP suppressed inflammatory cell infiltration and cytokine release in BALF, thereby elevating pulmonary function. It ameliorated lung pathological changes and airway goblet cell hyperplasia, and suppressed expression levels of Muc5ac mRNA and protein and phospho-ERK and SP1 levels in the lung tissues of the COPD mice. In conclusion, GFDHP inhibited mucus hypersecretion induced by LPS/CS by suppressing the activation of the ERK-SP1 pathway.


Author(s):  
Linlin Feng ◽  
Tingting Meng ◽  
Yunyun Qi ◽  
Seyyed Shamsadin Athari ◽  
Xiaoyun Chen

  Allergic asthma is a complicated respiratory problem characterized by airway inflammation, airway hyperresponsiveness (AHR), breathlessness, mucus hyper-secretion, and goblet cell hyperplasia. Asthma is controlled by genetic and environmental factors. Allergy is the main trigger of asthma and is mediated by Th2 cytokines along with IgE production. Vitamin D (Vit D) is the main supplementary factor for the immune system. In the present study, we investigated the effect of Vit D on the exacerbation of allergic asthma. A murine model of allergic asthma was induced by ovalbumin (OVA) in four of five groups of studied female BALB/c mice (each group, n=20). One group was considered as control. Of OVA-induced mice, two groups received Vit D via oral (10,000 IU/kg diet) or intranasal (inhalation) forms (30 min on days 25, 27, and 29), and the third group received budesonide. At least, AHR, the levels of IL-4, IL-5, IL-13, and INF-g in bronchoalveolar lavage fluid (BALF), serum IgE and histamine, IL-25 and IL-33 gene expression, as well as histopathology study of the lung were done. The Penh values, type2 Cytokines in BALF (in both protein and molecular levels), total IgE and histamine, perivascular and peribronchial inflammation, goblet cell hyperplasia, and mucus hypersecretion decreased significantly in both oral and intranasal Vit D-treated asthmatic mice groups, especially on day 38 of orally treated mice. Here, we found Vit D as a promising agent in control of allergic asthma with a remarkable ability to decrease the severity of inflammation. Therefore, Vit D sufficiency is highly recommended in asthmatic patients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thibault Allain ◽  
Elena Fekete ◽  
Olivia Sosnowski ◽  
Dimitri Desmonts de Lamache ◽  
Jean-Paul Motta ◽  
...  

AbstractExogenous factors that may influence the pathophysiology of Giardia infection remain incompletely understood. We have investigated the role of dietary fat in the pathogenesis of Giardia infection. Male 3 to 4-week-old C57BL/6 mice were fed either a low fat (LF) or a high fat (HF) diet for 12 days and challenged with G. duodenalis. In infected animals, the trophozoite burden was higher in HF + Giardia mice compared to the LF + Giardia group at day 7 post infection. Fatty acids exerted direct pro-growth effects on Giardia trophozoites. Analysis of disease parameters showed that HF + Giardia mice exhibited more mucosal infiltration by inflammatory cells, decreased villus/crypt ratios, goblet cell hyperplasia, mucus disruption, increased gut motility, and elevated fecal water content compared with LF + Giardia. HF diet-dependent exacerbation of Giardia-induced goblet cell hyperplasia was associated with elevated Atoh1 and Muc2 gene expression. Gut microbiota analysis revealed that the HF diet alone induces a taxonomic shift. HF + Giardia mice exhibited microbiota dysbiosis characterized by an increase of Firmicutes and a decrease of Bacteroidetes and significant changes in α- and β-diversity metrics. Taken together, the findings suggest that a HF diet exacerbates the outcome of Giardia infection. The data demonstrate that elevated dietary fat represents an important exogenous factor promoting the pathophysiology of giardiasis.


2021 ◽  
Vol 218 (9) ◽  
Author(s):  
Oyebola O. Oyesola ◽  
Michael T. Shanahan ◽  
Matt Kanke ◽  
Bridget M. Mooney ◽  
Lauren M. Webb ◽  
...  

Type 2 inflammation is associated with epithelial cell responses, including goblet cell hyperplasia, that promote worm expulsion during intestinal helminth infection. How these epithelial responses are regulated remains incompletely understood. Here, we show that mice deficient in the prostaglandin D2 (PGD2) receptor CRTH2 and mice with CRTH2 deficiency only in nonhematopoietic cells exhibited enhanced worm clearance and intestinal goblet cell hyperplasia following infection with the helminth Nippostrongylus brasiliensis. Small intestinal stem, goblet, and tuft cells expressed CRTH2. CRTH2-deficient small intestinal organoids showed enhanced budding and terminal differentiation to the goblet cell lineage. During helminth infection or in organoids, PGD2 and CRTH2 down-regulated intestinal epithelial Il13ra1 expression and reversed Type 2 cytokine–mediated suppression of epithelial cell proliferation and promotion of goblet cell accumulation. These data show that the PGD2–CRTH2 pathway negatively regulates the Type 2 cytokine–driven epithelial program, revealing a mechanism that can temper the highly inflammatory effects of the anti-helminth response.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chau Ling Tham ◽  
Sin Yee Yeoh ◽  
Chun Hao Ong ◽  
Hanis Hazeera Harith ◽  
Daud Ahmad Israf

2,6-Bis-(4-hydroxyl-3-methoxybenzylidine) cyclohexanone (BHMC), a synthetic curcuminoid analogue, has been shown to exhibit anti-inflammatory properties in cellular models of inflammation and improve the survival of mice from lethal sepsis. We further evaluated the therapeutic effect of BHMC on acute airway inflammation in a mouse model of allergic asthma. Mice were sensitized and challenged with ovalbumin (OVA), followed by intraperitoneal administration of 0.1, 1, and 10 mg/kg of BHMC. Bronchoalveolar lavage fluid, blood, and lung samples were collected, and the respiratory function was measured. OVA sensitization and challenge increased airway hyperresponsiveness (AHR) and pulmonary inflammation. All three doses of BHMC (0.1-10 mg/kg) significantly reduced the number of eosinophils, lymphocytes, macrophages, and neutrophils, as well as the levels of Th2 cytokines (IL-4, IL-5 and IL-13) in bronchoalveolar lavage fluid (BALF) as compared to OVA­challenged mice. However, serum level of IgE was not affected. All three doses of BHMC (0.1-10 mg/kg) were effective in suppressing the infiltration of inflammatory cells at the peribronchial and perivascular regions, with the greatest effect observed at 1 mg/kg which was comparable to dexamethasone. Goblet cell hyperplasia was inhibited by 1 and 10 mg/kg of BHMC, while the lowest dose (0.1 mg/kg) had no significant inhibitory effect. These findings demonstrate that BHMC, a synthetic nonsteroidal small molecule, ameliorates acute airway inflammation associated with allergic asthma, primarily by suppressing the release of inflammatory mediators and goblet cell hyperplasia to a lesser extent in acute airway inflammation of allergic asthma.


Author(s):  
Linsey E. Haswell ◽  
David Smart ◽  
Tomasz Jaunky ◽  
Andrew Baxter ◽  
Simone Santopietro ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Victor Kim ◽  
Stephanie Jeong ◽  
Huaqing Zhao ◽  
Mehmet Kesimer ◽  
Richard C. Boucher ◽  
...  

AbstractCOPD, chronic bronchitis (CB) and active smoking have all been associated with goblet cell hyperplasia (GCH) in small studies. Active smoking is strongly associated with CB, but there is a disconnect between CB clinical symptoms and pathology. Chronic cough and sputum production poorly correlate with the presence of GCH or COPD. We hypothesized that the primary determinant of GCH in ever smokers with or without airflow obstruction is active smoking. Goblet Cell Density (GCD) was measured in 71 current or former smokers [32 subjects without COPD and 39 COPD subjects]. Endobronchial mucosal biopsies were stained with Periodic Acid Schiff-Alcian Blue, and GCD was measured as number of goblet cells/mm basement membrane. GCD was divided into tertiles based on log10 transformed values. Log10GCD was greater in current smokers compared to former smokers. Those with classically defined CB or SGRQ defined CB had a greater log10 GCD compared to those without CB. Current smoking was independently associated with tertile 3 (high log10GCD) whereas CB was not in multivariable regression when adjusting for lung function and demographics. These results suggest that GCH is induced by active smoke exposure and does not necessarily correlate with the clinical symptoms of CB.


2020 ◽  
Author(s):  
Jaspreet K. Osan ◽  
Sattya N. Talukdar ◽  
Friederike Feldmann ◽  
Beth Ann DeMontigny ◽  
Kailey Jerome ◽  
...  

SummarySARS-CoV-2 has become a major problem across the globe, with approximately 50 million cases and more than 1 million deaths and currently no approved treatment or vaccine. Chronic obstructive pulmonary disease (COPD) is one of the underlying conditions in adults of any age that place them at risk for developing severe illness associated with COVID-19. We established an airway epithelium model to study SARS-CoV-2 infection in healthy and COPD lung cells. We found that both the entry receptor ACE2 and the co-factor transmembrane protease TMPRSS2 are expressed at higher levels on nonciliated goblet cell, a novel target for SARS-CoV-2 infection. We observed that SARS-CoV-2 infected goblet cells and induced syncytium formation and cell sloughing. We also found that SARS-CoV-2 replication was increased in the COPD airway epithelium likely due to COPD associated goblet cell hyperplasia. Our results reveal goblet cells play a critical role in SARS-CoV-2 infection in the lung.


Sign in / Sign up

Export Citation Format

Share Document