scholarly journals A Study on the Detection of Internal Defect Types for Duct Depth of Prestressed Concrete Structures Using Electromagnetic and Elastic Waves

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3931
Author(s):  
Young-Geun Yoon ◽  
Jae-Yun Lee ◽  
Hajin Choi ◽  
Tae-Keun Oh

Prestressed concrete (PSC) is widely used for the construction of bridges. The collapse of several bridges with PSC has been reported, and insufficient grout and tendon corrosion were found inside the ducts of these bridges. Therefore, non-destructive testing (NDT) technology is important for identifying defects inside ducts in PSC structures. Electromagnetic (EM) waves have limited detection of internal defects in ducts due to strong reflections from the surface of the steel ducts. Spectral analysis of the existing impact echo (IE) method is limited to specific conditions. Moreover, the flexural mode in upper defects of ducts located at a shallow depth and delamination defects inside ducts are not considered. In this study, the applicability of the elastic wave of IE was analyzed, and multichannel analysis of surface, EM, and shear waves was employed to evaluate six types of PSC structures. A procedure using EM waves, IE, and principal component analysis (PCA) was proposed for a more accurate classification of defect types inside ducts. The proposed procedure was effective in classifying upper, internal, and delamination defects of ducts under 100 mm in thickness, and it could be utilized up to 200 mm in the case of duct defect limitations.

2014 ◽  
Vol 577 ◽  
pp. 1114-1118 ◽  
Author(s):  
Jing Liu ◽  
Jun Xie ◽  
Xiao Yu He ◽  
Yu Shan He ◽  
Jia Hui Zhong

With the large-scale application of the prestressed concrete structure, the quality of the concrete component defects and pipeline grouting has increasingly become the focus of attention. The impact-echo scanner uses the nature of wave, which pass though different media at different velocities, to distinguish internal defects of concrete, pipe filling density and so on. In this paper, using the impact-echo method to detect the concrete block with prefabricated defects of shape, location, and size explores the effect of defect properties, parameter settings and detection environment to impact-echo preliminarily and also explores the relationship of pipeline filling status and impact-echo image. Based on this study, the article raised the problem met during this non-destructive testing methods applied to engineering, and accumulated a certain amount of available engineering data. The experiment results show that using the impact-echo method to identify the defects of concrete components and to test the quality of pipeline grouting is a more convenient and effective non-destructive testing method. Especially, with the radar method in the pipeline grouting quality inspection which complement each other to make up for the shortcomings the lightning wave in case of the metal medium total reflection phenomenon, cannot detect metal pipe grouting plumpness.


2015 ◽  
Vol 742 ◽  
pp. 128-131 ◽  
Author(s):  
Jian Min Zhou ◽  
Jun Yang ◽  
Qi Wan

This paper introduces the theory of eddy current pulsed thermography and expounds the research status of eddy current pulsed thermography in application and information extraction. Thermographic signal reconstruction, pulsed phase thermography, principal component analysis were introuduced in this paper and listed some fusion multiple methods to acquire information from infrared image. At last, it summarizes research progress, existing problem and deelopment of eddy current pulsed thermography.


2014 ◽  
Vol 605 ◽  
pp. 139-142
Author(s):  
Seong Uk Hong ◽  
Yong Taeg Lee ◽  
Seung Hun Kim ◽  
J.H. Na

Recently, the interest in maintenance and repair of existing concrete structures have increased, and it is typical to use non-destructive testing methods such as rebound hardness test or ultrasonic pulse velocity method to execute maintenance and repair of structures efficiently. Many non-destructive testing methods are being used in practice such as at construction sites, but verification for site applications are quite inadequate. Thus, this study intends to evaluate the applicability of Impact Echo Method which is one of the non-destructive testing methods using stress wave. Total of four specimens were planned and produced. The thickness of concrete slab members was estimated using I.E(OLSENs Freedom Data PC with Win.TFS Software Version 2.5.2). The estimated materials of concrete members by IE was found to be IE-1 specimen 178mm, IE-2 specimen 197mm, IE-3 specimen 191mm, and IE-4 specimen 263mm, and the error rate was found to be 4.22%~18.67% (average 9.6%), showing that they are relatively well in agreement. In this study, the experiments were executed with the objective of estimating the thickness of concrete slab members using Impact Echo Method. Through this study, the applicability of thickness estimation in concrete slab members using impact echo method could be confirmed.


Proceedings ◽  
2019 ◽  
Vol 27 (1) ◽  
pp. 13 ◽  
Author(s):  
Yousefi ◽  
Ibarra-Castanedo ◽  
Maldague

Detection of subsurface defects is undeniably a growing subfield of infrared non-destructive testing (IR-NDT). There are many algorithms used for this purpose, where non-negative matrix factorization (NMF) is considered to be an interesting alternative to principal component analysis (PCA) by having no negative basis in matrix decomposition. Here, an application of Semi non-negative matrix factorization (Semi-NMF) in IR-NDT is presented to determine the subsurface defects of an Aluminum plate specimen through active thermographic method. To benchmark, the defect detection accuracy and computational load of the Semi-NMF approach is compared to state-of-the-art thermography processing approaches such as: principal component thermography (PCT), Candid Covariance-Free Incremental Principal Component Thermography (CCIPCT), Sparse PCT, Sparse NMF and standard NMF with gradient descend (GD) and non-negative least square (NNLS). The results show 86% accuracy for 27.5s computational time for SemiNMF, which conclusively indicate the promising performance of the approach in the field of IR-NDT.


2020 ◽  
Vol 62 (5) ◽  
pp. 277-280 ◽  
Author(s):  
K Kaur ◽  
A Sharma ◽  
A Rani ◽  
V Kher ◽  
R Mulaveesala

Among widely used non-destructive testing (NDT) methods, infrared thermography (IRT) has gained importance due to its fast, whole-field, remote and quantitative inspection capabilities for the evaluation of various materials. Being fast and easy to implement, pulsed thermography (PT) plays a vital role in the infrared thermographic community. This paper provides a physical insight into the selection of empirical orthogonal functions obtained from principal component pulsed thermography for the detection of subsurface defects located inside a mild steel specimen.


2021 ◽  
Author(s):  
P. Trouvé-Peloux ◽  
B. Abeloos ◽  
A. Ben Fekih ◽  
C. Trottier ◽  
J.-M. Roche

Abstract This paper is dedicated to out-of-plane waviness defect detection within composite materials by ultrasonic testing. We present here an in-house experimental database of ultrasonic data built on composite pieces with/without elaborated defects. Using this dataset, we have developed several defect detection methods using the C-scan representation, where the defect is clearly observable. We compare here the defect detection performance of unsupervised, classical machine learning methods and deep learning approaches. In particular, we have investigated the use of semantic segmentation networks that provides a classification of the data at the “pixel level”, hence at each C-scan measure. This technique is used to classify if a defect is detected, and to produce a precise localization of the defect within the material. The results we obtained with the various detection methods are compared, and we discuss the drawbacks and advantages of each method.


2018 ◽  
Vol 199 ◽  
pp. 06007
Author(s):  
Sarah Vonk ◽  
Alexander Taffe

Ultrasonic testing of concrete has grown in importance considerably in recent years in non-destructive testing in civil engineering (NDT-CE). In the past, the main focus was on the imaging of the internal construction of steel and prestressed concrete components. On the other hand, comparatively little attention was paid to the location of near-surface reinforcement and concrete cover measurement. In this research, it is shown to what extent ultrasound is suitable for the detection of near-surface reinforcement in addition to magnetic inductive methods. The measurements were carried out with the newly developed Pundit 250 Array from the company Proceq and with the measuring devices of the company Acsys, the A1220 Monolith and the A1040 Mira. The ultrasound data was analysed with the vendor-independent software InterSAFT of the University of Kassel. Systematic investigations were carried out on test specimens with a variety on the concrete cover, the diameter of the reinforcement and the reinforcement ratio in the form of mesh reinforcement close to the surface. The detectability and accuracy of the concrete cover were set in relation to the concrete cover, wavelength and reinforcement diameter, with the result that more detailed rules for the detection of reinforcement are formulated for the user, instead of the known λ/2-criterion.


Sign in / Sign up

Export Citation Format

Share Document