scholarly journals Investigation of Significant Parameters during Abrasive Waterjet Turning

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4389
Author(s):  
Adam Štefek ◽  
Jan Raška ◽  
Libor M. Hlaváč ◽  
Sławomir Spadło

This paper presents an investigation of abrasive waterjet turning (AWJT). The purpose of the article was to investigate significant parameters of the turning process and to evaluate their impact on the turning product. The influence of the traverse speed, the rotational speed, and the relative position of the jet to the specimen (lateral jet shift) were investigated. Based on the previous research done in this field, the multi-pass tangential turning method was selected. Rotational speed does not seem to have a significant impact on the AWJ turning process. However, the relative position of the jet is a key parameter for improving the efficiency of the process. Increasing the lateral jet shift causes the volume of the material removed to increase until the optimal impact angle is reached. These findings need to be extended in order to adjust AWJT. Without these improvements, a comparison of jet to traditional technologies is inappropriate.

Author(s):  
Iman Zohourkari ◽  
Mehdi Zohoor

In this paper, an erosion-based model for abrasive waterjet (AWJ) turning process is presented. In the AWJ turning process a particular volume of material is removed by impacting of abrasive particles to the surface of the rotating cylindrical workpiece. This volume is estimated according to the modified Hashish erosion model; thus radius reduction at each revolution is calculated. The distinctively proposed model considers the continuous change in local impact angle due to change in workpiece diameter, axial traverse speed of the jet, the abrasive particle roundness and density. The accuracy of the proposed model is approved by experimental tests under various traverse speeds. The final diameters estimated by the new model are in good accordance with the experiments.


2014 ◽  
Vol 599-601 ◽  
pp. 555-559
Author(s):  
Iman Zohourkari ◽  
Mehdi Zohoor ◽  
Massimiliano Annoni

In this paper, surface waviness quality in abrasive waterjet offset-mode turning has been studied regarding variations of some process parameters. Influence of five main operational parameters such as water pressure, cutting head traverse speed, abrasive mass flow rate, workpiece rotational speed and depth of cut on surface waviness of turned parts have been investigated using statistical approach. Second order regression model presented for surface waviness. The model accuracy was verified by comparing with experimental data. It found that abrasive mass flow rate, cutting head traverse speed and DOC are the most influential parameters while water pressure and workpiece rotational speed show lesser effectiveness.


2014 ◽  
Vol 621 ◽  
pp. 202-207
Author(s):  
Iman Zohourkari ◽  
Mehdi Zohoor ◽  
Massimiliano Annoni

In this paper, surface waviness produced by turning aluminum parts with abrasive waterjet has been studied regarding changes in some process parameters. Effect of five major parameters such as water pressure, cutting head traverse speed, abrasive mass flow rate, workpiece rotational speed and depth of cut have been investigated using analysis of variances. Second order regression model presented forwaviness.The validity of the model wasconfirmed bycomparing with experimental data. It found thatabrasive mass flow rate, cutting head traverse speed and DOC are the most influencing parameters while water pressure and workpiece rotational speed show lesser effectiveness.


2014 ◽  
Vol 6 ◽  
pp. 624203 ◽  
Author(s):  
Iman Zohourkari ◽  
Mehdi Zohoor ◽  
Massimiliano Annoni

The effects of the main operational machining parameters on the material removal rate (MRR) in abrasive waterjet turning (AWJT) are presented in this paper using a statistical approach. The five most common machining parameters such as water pressure, abrasive mass flow rate, cutting head traverse speed, workpiece rotational speed, and depth of cut have been put into a five-level central composite rotatable experimental design (CCRD). The main effects of parameters and the interaction among them were analyzed by means of the analysis of variance (ANOVA) and the response surfaces for MRR were obtained fitting a second-order polynomial function. It has been found that depth of cut and cutting head traverse speed are the most influential parameters, whereas the rotational speed is insignificant. In addition, the investigations show that interactions between traverse speed and pressure, abrasive mass flow rate and depth of cut, and pressure and depth of cut are significant on MRR. This result advances the AWJT state of the art. A complete model discussion has been reported drawing interesting considerations on the AWJT process characterising phenomena, where parameters interactions play a fundamental role.


2013 ◽  
Vol 797 ◽  
pp. 9-14 ◽  
Author(s):  
Mirza Ahmed Ali ◽  
Jing Ming Fan ◽  
Hong Tao Zhu ◽  
Jun Wang

A visualization study of the radial-mode abrasive waterjet (AWJ) turning process on an alumina ceramic is presented to gain an understanding of cutting front development process and hence the material removal mechanisms. A statistically designed experiment is conducted to study the effects of process parameters on the development of the cutting front, considering the change of water pressure, nozzle feed speed and nozzle tilt angle. It is found that the most significant parameters affecting the cutting front development are feed speed and water pressure. Further, the actual jet impact angle is dependent on both the water pressure and feed speed, but at higher water pressures the actual impact angle tends to become independent of feed speed, while water pressure becomes the dominating factor.


2021 ◽  
Vol 11 (11) ◽  
pp. 4925
Author(s):  
Jennifer Milaor Llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abrasive water jet machining is a proficient alternative for cutting difficult-to-machine materials with complex geometries, such as austenitic stainless steel 304L (AISI304L). However, due to differences in machining responses for varied material conditions, the abrasive waterjet machining experiences challenges including kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machining is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving lower kerf taper angle and higher material removal rate. Based on experimental investigation, a trend of decreasing the level of traverse speed and material thickness that results in minimum kerf taper angle values of 0.825° for machining curvature profile and 0.916° for line profiles has been observed. In addition, higher traverse speed and material thickness achieved higher material removal rate in cutting different curvature radii and lengths in line profiles with obtained values of 769.50 mm3/min and 751.5 mm3/min, accordingly. The analysis of variance revealed that material thickness had a significant impact on kerf taper angle and material removal rate, contributing within the range of 69–91% and 62–69%, respectively. In contrast, traverse speed was the least factor measuring within the range of 5–18% for kerf taper angle and 27–36% for material removal rate.


2021 ◽  
pp. 009524432110200
Author(s):  
Ali Ghorbankhan ◽  
Mohammad Reza Nakhaei ◽  
Ghasem Naderi

The friction stir process (FSP) method used to prepare polyamide 6 (PA6)/nitrile-butadiene rubber (NBR) nanocomposites with 1 wt% Graphene nanoparticles. Response surface methodology (RSM) and Box-Behnken design were used to study the effects of four input variables including tool rotational speed (ω), shoulder temperature (T), traverse speed (S), and the number of passes (N) on tensile strength and impact strength of PA6/NBR/Graphene nanocomposite. In order to investigate the dispersion state of Graphene and the morphology of the PA6/NBR blend in the presence of Graphene, wide x-ray patterns (WAX), scanning electron microscopy (SEM) were performed. Furthermore and differential scanning calorimetric (DSC) was used to investigate the thermal properties of PA6/NBR containing 1 wt% Graphene nanoparticles. The results confirmed that at the optimum range of input variables, PA6/NBR/Graphene nanocomposite provided good thermal stability as well as the highest tensile strength, and impact strength. This is caused by the large surface area to volume ratio of the dispersed layered Graphene in PA6/NBR blends. Under optimal conditions of the rotational speed of 1200 rpm, traverse speed of 20 mm/min, shoulder temperature of 125°C, and number pass of 3, the maximum tensile strength and impact strength are 70.4 MPa and 70.3 J/m, respectively.


Author(s):  
Barath M ◽  
◽  
Rajesh S ◽  
Duraimurugan P ◽  
◽  
...  

The abrasive mixed waterjet was with success utilized to chop several materials together with steel, metal and glass for a spread of business applications. This work focuses on surface roughness of hybrid metal matrix composite (AA6061, Al2O3, B4C). Machining was applied by AWJM (Abrasive Waterjet Cutting) at completely different parameters Water pressure, Traverse speed, Abrasive flow and stand-off distance. The reinforced composite was analyzed exploitation FE SEM (Field Emission Scanning lepton Microscope) and distribution of reinforced was studied by AFM (Atomic Force Microscopy). For optimum results surface roughness was calculated.


2020 ◽  
Vol 318 ◽  
pp. 01031
Author(s):  
Panagiotis Karmiris-Obratański ◽  
Nikolaos E. Karkalos ◽  
Anastasios Tzotzis ◽  
Panagiotis Kyratsis ◽  
Angelos P. Markopoulos

Conventional machining processes such as turning, milling and drilling have long been prominent in the metalworking industry but alternative processes which do not require the use of a cutting tool in order to conduct material removal have also been proven to be sufficiently capable of achieving high efficiency in various cases. In particular, Abrasive Waterjet (AWJ) machining can be regarded as a rather appropriate choice for cutting operations, taking into consideration that it involves no heat affected zones, is able to process all material types and create a variety of complex features with success. In the present work, a comprehensive study on the effect of four process parameters, namely jet traverse speed, stand-off distance, abrasive mass flow rate and jet pressure on the width and depth of machined slots on a steel workpiece is conducted. The results are first analyzed with statistical methods in order to determine the effect and the relative importance of each parameter on the produced width and depth of the slots. Finally, these results are used to develop soft computing predictive models based on Artificial Neural Networks (ANN), which can efficiently relate the process parameters with its outcome.


Author(s):  
J Wang ◽  
A Moridi ◽  
P Mathew

An investigation of the micro-grooving performance of abrasive air jet (AAJ) on quartz crystals is presented and discussed. An experimental study was carried out first to understand the effect of process parameters on the major grooving performance measures such as groove depth, groove width, kerf taper, and surface roughness. Plausible trends for these grooving performance measures with respect to the various process variables, such as air pressure, nozzle traverse speed, jet impact angle, and abrasive mass flowrate, are discussed. It is found that AAJ is an effective technology for micromachining of quartz crystals and the grooving performance can be improved or optimized by selecting the process parameters properly. Predictive models are then developed for quantitatively estimating the micro-grooving performance. The models are finally verified by an experiment. It shows that the model predictions are in good agreement with the experimental results under the corresponding conditions.


Sign in / Sign up

Export Citation Format

Share Document