scholarly journals Effects of Laser Spot Size on the Mechanical Properties of AISI 420 Stainless Steel Fabricated by Selective Laser Melting

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4593
Author(s):  
Xi-Huai Yang ◽  
Chong-Ming Jiang ◽  
Jeng-Rong Ho ◽  
Pi-Cheng Tung ◽  
Chih-Kuang Lin

The purpose of this study is to investigate the effects of laser spot size on the mechanical properties of AISI 420 stainless steel, fabricated by selective laser melting (SLM), process. Tensile specimens were built directly via the SLM process, using various laser spot diameters, namely 0.1, 0.2, 0.3, and 0.4 mm. The corresponding volumetric energy density (EV) is 80, 40, 26.7, and 20 J/mm3, respectively. Experimental results indicates that laser spot size is an important process parameter and has significant effects on the surface roughness, hardness, density, tensile strength, and microstructure of the SLM AISI 420 builds. A large laser spot with low volumetric energy density results in balling, un-overlapped defects, a large re-heated zone, and a large sub-grain size. As a result, SLM specimens fabricated by the largest laser spot diameter of 0.4 mm exhibit the roughest surface, lowest densification, and lowest ultimate tensile strength. To ensure complete melting of the powder and melt pool stability, EV of 80 J/mm3 proves to be a suitable laser energy density value for the given SLM processing and material system.

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 919 ◽  
Author(s):  
Črtomir Donik ◽  
Jakob Kraner ◽  
Irena Paulin ◽  
Matjaž Godec

We have investigated the impact of the process parameters for the selective laser melting (SLM) of the stainless steel AISI 316L on its microstructure and mechanical properties. Properly selected SLM process parameters produce tailored material properties, by varying the laser’s power, scanning speed and beam diameter. We produced and systematically studied a matrix of samples with different porosities, microstructures, textures and mechanical properties. We identified a combination of process parameters that resulted in materials with tensile strengths up to 711 MPa, yield strengths up to 604 MPa and an elongation up to 31%, while the highest achieved hardness was 227 HV10. The correlation between the average single-cell diameter in the hierarchical structure and the laser’s input energy is systematically studied, discussed and explained. The same energy density with different SLM process parameters result in different material properties. The higher energy density of the SLM produces larger cellular structures and crystal grains. A different energy density produces different textures with only one predominant texture component, which was revealed by electron-backscatter diffraction. Furthermore, three possible explanations for the origin of the dislocations are proposed.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744015 ◽  
Author(s):  
Zeng Zheng ◽  
Lianfeng Wang ◽  
Biao Yan

Selective laser melting (SLM) was used to prepare 316L stainless steel parts and the effects of laser power on the microstructure and mechanical properties of the final products were studied. With increasing applied laser power, the defects of as-built parts were reduced greatly and the as-built parts presented a highest relative density of 99.1%. The tensile strength of samples was significantly improved from 321 ± 10 MPa to 722 ± 10 MPa. The microhardness was homogeneous; the residual stresses in the samples were tensile, which were higher in the section perpendicular to the laser scanning strategy. The probable reasons for this phenomenon were proposed.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3603
Author(s):  
Tim Pasang ◽  
Benny Tavlovich ◽  
Omry Yannay ◽  
Ben Jakson ◽  
Mike Fry ◽  
...  

An investigation of mechanical properties of Ti6Al4V produced by additive manufacturing (AM) in the as-printed condition have been conducted and compared with wrought alloys. The AM samples were built by Selective Laser Melting (SLM) and Electron Beam Melting (EBM) in 0°, 45° and 90°—relative to horizontal direction. Similarly, the wrought samples were also cut and tested in the same directions relative to the plate rolling direction. The microstructures of the samples were significantly different on all samples. α′ martensite was observed on the SLM, acicular α on EBM and combination of both on the wrought alloy. EBM samples had higher surface roughness (Ra) compared with both SLM and wrought alloy. SLM samples were comparatively harder than wrought alloy and EBM. Tensile strength of the wrought alloy was higher in all directions except for 45°, where SLM samples showed higher strength than both EBM and wrought alloy on that direction. The ductility of the wrought alloy was consistently higher than both SLM and EBM indicated by clear necking feature on the wrought alloy samples. Dimples were observed on all fracture surfaces.


2017 ◽  
Vol 62 (4) ◽  
pp. 2125-2131 ◽  
Author(s):  
Z. Brytan

AbstractThe paper presents the results of the basic mechanical properties determined in the static tensile test, impact un-notched Charpy test and hardness of austenitic stainless steel type 316L produced by two techniques: classical pressing and sintering in a vacuum with rapid cooling and selective laser melting (SLM). In this work fracture surface of Charpy test, samples were studied.The results indicate that application of selective laser melting (SLM) makes it possible to double increase the strength properties of components manufactured from austenitic stainless steel type 316L compared to sintering in a vacuum. Resulted in mechanical properties strongly depend on porosity characteristic and the presence of superficial oxides in the case of sintered steel and the character of observed microstructural defects deriving from non-fully melted powder particles and the formation of voids between subsequently melted pool tracks during the SLM.


Sign in / Sign up

Export Citation Format

Share Document