scholarly journals Toolpath Planning and Generation for Multi-Stage Incremental Forming Based on Stretching Angle

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4818
Author(s):  
Hu Zhu ◽  
Guixi Cheng ◽  
Dongwon Jung

To solve the problems that exist in the multi-stage forming of the straight wall parts, such as the sheet fracture, uneven thickness distribution, and the stepped feature sinking, a new forming toolpath planning and generation method for the multi-stage incremental forming was proposed based on the stretching angle. In this method, the parallel planes that were used for forming toolpath generation were constructed by using the stretching angle so that the distances between the parallel planes and the forming angles were gradually reduced. This makes the sheet material flow become changed and the thickness thinning is relieved. The software system for the toolpath generation was developed by using C++, VC++, and OpenGL library. In order to verify the feasibility of the proposed method, numerical simulation and forming experiments were carried out for the single stage forming, the traditional multi-stage forming, and multi-stage forming based on the proposed forming toolpath, using 1060 aluminum sheets. The comparative analysis of the thickness distribution, profile curve, strain curve, and sheet material flow shows that the proposed method is feasible, and the profile dimension accuracy is better, the thickness distribution is more uniform, and the sinking and bulging are significantly reduced. The formed sheet part with the stretching angle of 15° has higher dimensional accuracy, smaller bottom subsidence, and larger thickness than that of the stretching angle 5°.

2011 ◽  
Vol 337 ◽  
pp. 452-455 ◽  
Author(s):  
Zhao Bing Liu ◽  
Paul Meehan ◽  
Paul Bellette

Incremental Sheet Forming (ISF) is a promising sheet-metal-forming technology which is drawing more and more researchers’ attention due to its flexibility of manufacturing three-dimensional products at a relatively low cost for rapid prototyping and small-batch production. This paper is focused on the thickness distribution and the forming strategy analysis for two point incremental forming with a male die. The analyzed benchmark is half a torus which is generated by revolving a semi-circle. Such a part is hardly able to be formed by single point incremental forming because its slope varies from 0 degree to 90 degrees. In terms of the varying slope, the variant of sine’s law is derived to give an approximate prediction of the thickness distribution from an analytical perspective. In addition, a multi-stage forming strategy is proposed in order to form the part successfully. In particular, a keying operation is implemented carefully in order to avoid twist phenomenon and achieve good dimensional accuracy.


2018 ◽  
Vol 19 (3) ◽  
pp. 313
Author(s):  
Masood Ghassabi ◽  
Milad Salimi ◽  
Mohammad Haghpanahi

Incremental forming is one of the most well-known forming processes for complex and asymmetric parts. This method uses a CNC machine, simple forming tool, and a die. This study focused on effects of some parameters such as the material, feed rate, pitch, rotational speed and movement strategy of tool on the dimensional precision, forming force, thickness distribution and fracture in the welding area. The results showed that single point incremental forming (SPIF) led to a better thickness distribution with lower tool force, whereas two-point incremental forming led to better dimensional accuracy. Rotational speed does not have any significant impact on the forming process while decreasing the feed rate partially reduced the forming force. According to the results, although dimensional precision in double point incremental forming is better than SPIF, when it comes to the thickness distribution, forming force, and economic issues, SPIF is in favor. The results also showed that by connecting two materials, different parameters for the two materials could be investigated simultaneously in one simulation process.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3907
Author(s):  
Hu Zhu ◽  
Yang Wang ◽  
Yibo Liu ◽  
Dongwon Jung

In the CNC incremental forming process, the sheet tilting method can be used to realize the non-fracture forming of a surface with large forming angles. However, the forming effect of the formed part will have big differences when the inclined angle of the sheet is different. Therefore, four different tilted sheets with inclined angles of 15°, 20°, 25°, and 30° were used to study the influence of sheet tilting on forming quality by using 1060 Aluminum sheet as the forming sheet in single point CNC incremental forming. First, the influence of four different inclined angles of the sheet on the overall thickness distribution, plastic strain, and material flow of the formed part was studied by using numerical simulation. Then, the influence of four different inclined angles of sheets on the profile accuracy and thickness thinning rate of the formed part was studied through single point incremental forming experiments. The research results show that sheet tilting has little effect on the profile accuracy of the formed part, but has a great influence on the material flow, plastic strain, and thickness distribution.


Author(s):  
Hossein Ghorbani-Menghari ◽  
Mehrdad Azadipour ◽  
Mehran Ghasempour-Mouziraji ◽  
Young Hoon Moon ◽  
Ji Hoon Kim

The deformation machining process (DMP) involves machining and incremental forming of thin structures. It can be applied for manufacturing products such as curved-surface blades without using 5-axis computerised numerical control machines. This work presents the effect of tool diameter and forming temperature on spring-back and dimensional accuracy of a simple fabricated part. The results of the first phase of the study are utilised to design the fabrication process of a curved surface blade. A feature-based algorithm is used to design the tool path for the forming process. The dimensional accuracy of the final product is improved through warm forming, two-point incremental forming, and extension of the bending zone to the outside of the product edges. The results show that DMP can be used to fabricate complex curved-surface workpieces with acceptable dimensional accuracy.


2011 ◽  
Vol 301-303 ◽  
pp. 452-455 ◽  
Author(s):  
Yuji Kotani ◽  
Hisaki Watari ◽  
Akihiro Watanabe

The approach to total weight reduction has been a key issue for car manufacturers as they cope with more and more stringent requirements for fuel economy. In sheet metal forming, local increases in product-sheet thickness effectively contribute to reducing the total product weight. Products could be designed more efficiently if a designer could predict and control the thickness distribution of formed products. This paper describes a numerical simulation and evaluation of the material flow in local thickness increments of products formed by an ironing process. In order to clarify the mechanism of the local increase in sheet thickness, a 3-D numerical simulation of deep drawing and ironing was performed using finite-element simulation. The effects of various types of finite elements that primarily affect thickness changes in original materials and thickness prediction were investigated. It was found that the sheet-thickness distribution could be predicted if the original material was relatively thick and if an appropriate type of finite element is selected.


Sign in / Sign up

Export Citation Format

Share Document