scholarly journals Bathurst Burr (Xanthium spinosum) Powder—A New Natural Effective Adsorbent for Crystal Violet Dye Removal from Synthetic Wastewaters

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5861
Author(s):  
Giannin Mosoarca ◽  
Cosmin Vancea ◽  
Simona Popa ◽  
Sorina Boran

A new natural adsorbent material, Bathurst burr powder, was used to remove crystal violet dye from synthetic wastewaters. Particle size distribution and SEM and FTIR analyses were performed to characterize it. The effect of the operational adsorption process parameters (pH, ionic strength, initial dye concentration, adsorbent dose, contact time, temperature) onto the adsorption process was evaluated in a batch system. Equilibrium, kinetic, and thermodynamic studies were performed in order to understand the adsorption process. Taguchi method and ANOVA test were used to optimize the dye adsorption conditions and to establish the percentage contribution of each factor, respectively. The accuracy of the Taguchi prediction method was analyzed by correlating the predicted dye removal efficiency with the experimentally determined one. The particle size distribution analysis showed that 82.15% of the adsorbent particles have an average size below 0.5 mm. The adsorption process followed the Langmuir isotherm and pseudo-second order kinetic model. Maximum adsorption capacity value (164.10 mg·g−1) was higher compared to many similar adsorbents. The process was endothermic, spontaneous, and favorably involving a physisorption mechanism. The Taguchi method showed that the most influential controllable factor was pH (65% contribution in adsorption efficiency) and the data analysis indicates a very good accuracy of the experimental design (R2 = 0.994). The obtained results demonstrated that Bathurst burr powder can be used as a cheap and efficient adsorbent for crystal violet dye removal from aqueous solution.

Author(s):  
S. Cazares ◽  
J. A. Barrios ◽  
C. Maya ◽  
G. Velásquez ◽  
M. Pérez ◽  
...  

Abstract An important physical property in environmental samples is particle size distribution. Several processes exist to measure particle diameter, including change in electrical resistance, blocking of light, the fractionation of field flow and laser diffraction (these being the most commonly used). However, their use requires expensive and complex equipment. Therefore, a Digital Microscopic Imaging Application (DMIA) method was developed adapting the algorithms used in the Helminth Egg Automatic Detector (HEAD) software coupled with a Neural Network (NN) and Bayesian algorithms. This allowed the determination of particle size distribution in samples of waste activated sludge (WAS), recirculated sludge (RCS), and pretreated sludge (PTS). The recirculation and electro-oxidation pre-treatment processes showed an effect in increasing the degree of solubilization (DS), decreasing particle size and breakage factor with ranges between 44.29%, and 31.89%. Together with a final NN calibration process, it was possible to compare results. For example, the 90th percentile of Equivalent Diameter (ED) value obtained by the DMIA with the corresponding result for the laser diffraction method. DMIA values: 228.76 μm (WAS), 111.18 μm (RCS), and 84.45 μm (PTS). DMIA processing has advantages in terms of reducing complexity, cost and time, and offers an alternative to the laser diffraction method.


2013 ◽  
Vol 788 ◽  
pp. 627-630
Author(s):  
Jian Shu Hou

The particle size distribution of soil is very importantto its physical and mechanical property. The ordinary method of the particlesize distribution analysis is based on shaking the soil through a set of sieves.But it will be difficult to use the method while there have particles largerthan the biggest aperture of the size sieves. Then the digital image processingwas used to solve the problem here. The processing technologies, such as imageanalysis and enhancement, deblurring, edge detection were studied to analyzethe image of soil particles. Then the image processing method was used to getthe particle size distribution accurately. Though some promotions need to becarried out in the further study, it is can be found that the image processingmethod is more efficiently than the traditional method.


Sign in / Sign up

Export Citation Format

Share Document