scholarly journals Transparent Fiber-Reinforced Composites Based on a Thermoset Resin Using Liquid Composite Molding (LCM) Techniques

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6087
Author(s):  
Yavuz Caydamli ◽  
Klaus Heudorfer ◽  
Jens Take ◽  
Filip Podjaski ◽  
Peter Middendorf ◽  
...  

In this study, optically transparent glass fiber-reinforced polymers (tGFRPs) were produced using a thermoset matrix and an E-glass fabric. In situ polymerization was combined with liquid composite molding (LCM) techniques both in a resin transfer molding (RTM) mold and a lite-RTM (L-RTM) setup between two glass plates. The RTM specimens were used for mechanical characterization while the L-RTM samples were used for transmittance measurements. Optimization in terms of the number of glass fabric layers, the overall degree of transparency of the composite, and the mechanical properties was carried out and allowed for the realization of high mechanical strength and high-transparency tGFRPs. An outstanding degree of infiltration was achieved maintaining up to 75% transmittance even when using 29 layers of E-glass fabric, corresponding to 50 v. % fiber, using an L-RTM setup. RTM specimens with 44 v. % fiber yielded a tensile strength of 435.2 ± 17.6 MPa, and an E-Modulus of 24.3 ± 0.7 GPa.

2017 ◽  
Vol 165 ◽  
pp. 65-73 ◽  
Author(s):  
Davi M. Montenegro ◽  
Francesco Bernasconi ◽  
Markus Zogg ◽  
Matthias Gössi ◽  
Rafael Libanori ◽  
...  

2019 ◽  
Vol 809 ◽  
pp. 53-58
Author(s):  
Jan Eric Semar ◽  
David May

Elastomer layers offer a wide range of surface functionalization options for fiber-reinforced polymer composites (FRPC), e.g. erosion protection or increased impact resistance. Goal of this study was to investigate if it is possible to prepare a textile-based semi-finished product with elastomeric surface, which can easily be used as outermost layer in different liquid composite molding (LCM) processes. For this purpose, different types of elastomer were pressed and vulcanized onto a biaxial glass fiber fabric. Target of this procedure was to reach partial immersion of the elastomer into the textile with remaining dry textile areas. The dry areas of the textile can later be impregnated with a thermoset resin system. The strategy is to have the transition region between elastomer and thermoset within one textile layer and to give a robust and easy to handle semi-finished-product in order to achieve a maximum bonding strength of the elastomer surface to the final composite part. It could be shown by micrographs and computer tomography that the elastomer only penetrates the textile at its boundary. A remarkable microimpregnation of individual filaments within the rovings does not take place. Concerning the manufacturing, since water evaporates during vulcanization, a sufficient process pressure must be maintained throughout the entire vulcanization process to ensure a pore-free elastomer. Peel-off tests similar to DIN EN 28510-1 on the finished composite showed a failure in the laminate and not in the boundary layer between laminate and elastomer, so that the desired high joint strength could be demonstrated.


2014 ◽  
Vol 900 ◽  
pp. 449-454
Author(s):  
Giosuè Boscato

The present work proposes and analyses the solution for seismic behaviour of GFRP (Glass Fiber Reinforced Polymers) applications to evaluate the performances respect to dynamic actions considering the global effect on historical structures. The good strength-self-weight relationship defines the GFRP pultruded profile as an efficacious and innovative solution for structural rehabilitation of historical buildings. The composite material with polymeric matrix, FRP (Fiber Reinforced Polymers), is widely used in civil engineering as sheets, bars and strips. Recently a new technology was adopted to improve the structural response with limited increment of dead load with reversible and independent solution.


2012 ◽  
Vol 713 ◽  
pp. 121-126
Author(s):  
A. Alfonso ◽  
J. Andrés ◽  
J.A. García

The present research work assesses the manufacture of long fiber thermoplastic matrix composite materials (GreenComposites). Thermoplastic matrices are too viscous to be injected into the conventional LCM (Liquid Composite Molding) molds, and then epoxy, polyester or vinylester resins are used. Nevertheless, the groundbreaking anionic polymerization of caprolactam allows such a synthesis of a thermoplastic APA6 matrix inside the mold. This matrix is sintered from the starting monomers, and presents high mechanical performance and recyclability. In order to do the reactive injection in a LCM mold, it is necessary to control the polymerization mechanism of such a thermoplastic matrix. This paper puts special emphasis on detecting and solving all problems which arose during synthesis. For instance, moisture values were assessed for all starting reactants, since humidity keeps polymerization from occurring. It is thought that once the synthesis and the resulting material characterization are well controlled, the manufacture of GreenComposites through in situ polymerization, as well as addition of state-of-the-art fabrics such as basalt, can proceed successfully.


2017 ◽  
Vol 742 ◽  
pp. 714-722
Author(s):  
Joseph Goldmann ◽  
Markus Kaestner ◽  
Volker Ulbricht

The present contribution aims to investigate the ability of drawing predictive conclusions from homogenization in case of damage. Therefor, two topics will be addressed. On the one hand, material properties for the constituents on the microscale have to be derived, to render a predictive homogenization possible. The investigation at hand is concerned with glass fiber reinforced epoxy resin. In this example the properties of the fiber and the matrix have to be studied individually by experiments. Furthermore, the interface between both materials needs to be examined. To this end experiments on several models of single fiber composites have been developed in the literature. For the present material combination single fiber fragmentation tests and pullout tests have been conducted and evaluated. On the other hand, boundary conditions are necessary, that allow for the strain localization in a volume element without leading to spurious localization zones.


APT Bulletin ◽  
2004 ◽  
Vol 35 (4) ◽  
pp. 27
Author(s):  
Samer H. Petro ◽  
Emory L. Kemp ◽  
Hota V. S. Gangarao

Sign in / Sign up

Export Citation Format

Share Document