scholarly journals Effect of Carbon Content on Microstructure, Properties and Texture of Ultra-Thin Hot Rolled Strip Produced by Endless Roll Technology

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6174
Author(s):  
Peng Tian ◽  
Guoming Zhu ◽  
Yonglin Kang

In order to make a comprehensive comparison between ultra-thin hot rolled low carbon steel (LC) and extra low carbon steel (ELC) produced by endless roll technology and explain the differences, a detailed investigation into the microstructural characterization, characteristics of cementite and precipitates, mechanical properties, internal friction peaks, texture characterization by an X-ray powder diffractometer and electron backscatter diffraction, and formability including earing behavior, hole expanding ratio and V-shaped bending properties was carried out with different carbon content for 1.0 mm thickness ultra-thin hot rolled strip produced in endless strip production line. The experimental results indicate that the microstructure of both is composed of multi-layer areas with different grain sizes and thicknesses, the strength and elongation of LC are higher than that of ELC, but the content of solid solution carbon atoms and r of ELC are higher than that of LC, at the same time, the formability of ultra-thin strip ELC is better than that of LC mainly related to the content of {hkl} <110> and {111} <112> of ELC was higher than those of LC. The mechanical and formability properties of ultra-thin hot rolled strip by endless roll technology can meet the requirements of replacement cold rolled strip by hot rolled strip.

2009 ◽  
Vol 76-78 ◽  
pp. 544-547
Author(s):  
Hai Bo Xie ◽  
Zheng Yi Jiang ◽  
Yan Bing Du ◽  
Dong Bin Wei ◽  
A. Kiet Tieu

Surface roughness plays an important role in determining the tribological behaviour of mechanical components (e.g. gears and roller bearings etc.) under full-film and mixed (or partial) elastohydrodynamic lubrication conditions. This paper describes a detailed mechanics analysis of the surface roughness transformation of thin strip which has been cold rolled on an experimental mill. Low carbon steel strips were rolled at various speeds and reductions, and the effects of rolling parameters on surface roughness are studied. The results of surface roughness can provide important information to optimise the rolling schedule and to improve the rolled strip quality.


2011 ◽  
Vol 415-417 ◽  
pp. 853-858 ◽  
Author(s):  
Xiang Long Yu ◽  
Zheng Yi Jiang ◽  
Xiao Dong Wang ◽  
Dong Bin Wei ◽  
Quan Yang

The influence of the coiling temperature, ranging from 550 to 570°C, on the morphology and the phase composition of the oxide scale formed on the microalloyed low carbon steel for automobiles after hot strip rolling was investigated. Physicochemical characteristics of the oxide scales were examined and their formation mechanism was discussed. Thickness of the oxide scale is in the range of 8-11µm and decreases with a decrease of coiling temperature. The microstructure and phase composition, XRD analysis shows a large amount of magnetite (Fe3O4) and some sparse hematite (Fe2O3) exist on the surface of hot rolled strip when the coiling temperature reduces from 570 to 550°C. The coiling temperature substantially affects the internal microstructure and magnetite phase.


1993 ◽  
Vol 90 (7-8) ◽  
pp. 917-922
Author(s):  
Y. Matsuda ◽  
M. Nishino ◽  
J. Ikeda

Alloy Digest ◽  
1972 ◽  
Vol 21 (8) ◽  

Abstract AISI 1015 is a low-carbon steel used in the annealed, cold-worked, hot-rolled or normalized condition for general purpose construction and engineering. It is also used for case-hardened components. It combines good machinability, good workability and good weldability. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-48. Producer or source: Carbon steel mills.


2017 ◽  
Vol 740 ◽  
pp. 93-99
Author(s):  
Muhammad Hafizuddin Jumadin ◽  
Bulan Abdullah ◽  
Muhammad Hussain Ismail ◽  
Siti Khadijah Alias ◽  
Samsiah Ahmad

Increase of soaking time contributed to the effectiveness of case depth formation, hardness properties and carbon content of carburized steel. This paper investigates the effect of different soaking time (7-9 hours) using powder and paste compound to the carburized steel. Low carbon steels were carburized using powder and paste compound for 7, 8 and 9 hours at temperature 1000°C. The transformation of microstructure and formation carbon rich layer was observed under microscope. The microhardness profiles were analyzed to investigate the length of case depth produced after the carburizing process. The increment of carbon content was considered to find the correlation between types of carburizing compound with time. Results shows that the longer carburized steel was soaked, the higher potential in formation of carbon rich layer, case depth and carbon content, which led to better hardness properties for carburized low carbon steel. Longer soaking time, 9 hours has a higher dispersion of carbon up to 41%-51% compare to 8 hours and 7 hours. By using paste carburizing, it has more potential of carbon atom to merge the microstructure to transform into cementite (1.53 wt% C) compare to powder (0.97 wt% C), which increases the hardness of carburized steel (13% higher).


Sign in / Sign up

Export Citation Format

Share Document