scholarly journals Sputtered Non-Hydrogenated Amorphous Silicon as Alternative Absorber for Silicon Photovoltaic Technology

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6550
Author(s):  
Susana Fernández ◽  
J. Javier Gandía ◽  
Elías Saugar ◽  
Mª Belén Gómez-Mancebo ◽  
David Canteli ◽  
...  

Non-hydrogenated amorphous-silicon films were deposited on glass substrates by Radio Frequency magnetron sputtering with the aim of being used as precursor of a low-cost absorber to replace the conventional silicon absorber in solar cells. Two Serie of samples were deposited varying the substrate temperature and the working gas pressure, ranged from 0.7 to 4.5 Pa. The first Serie was deposited at room temperature, and the second one, at 325 °C. Relatively high deposition rates above 10 Å/s were reached by varying both deposition temperature and working Argon gas pressure to ensure high manufacturing rates. After deposition, the precursor films were treated with a continuous-wave diode laser to achieve a crystallized material considered as the alternative light absorber. Firstly, the structural and optical properties of non-hydrogenated amorphous silicon precursor films were investigated by Raman spectroscopy, atomic force microscopy, X-ray diffraction, reflectance, and transmittance, respectively. Structural changes were observed in the as-deposited films at room temperature, suggesting an orderly structure within an amorphous silicon matrix; meanwhile, the films deposited at higher temperature pointed out an amorphous structure. Lastly, the effect of the precursor material’s deposition conditions, and the laser parameters used in the crystallization process on the quality and properties of the subsequent crystallized material was evaluated. The results showed a strong influence of deposition conditions used in the amorphous silicon precursor.

1998 ◽  
Vol 227-230 ◽  
pp. 1164-1167 ◽  
Author(s):  
Oleg Gusev ◽  
Mikhail Bresler ◽  
Alexey Kuznetsov ◽  
Vera Kudoyarova ◽  
Petr Pak ◽  
...  

1992 ◽  
Vol 258 ◽  
Author(s):  
J. Fan ◽  
J. Kakalios

ABSTRACTThe room temperature non-radiative efficiency, defined as the ratio of the heat released per absorbed photon for doped and undoped hydrogenated amorphous silicon (a-Si:H) has been measured using photo-pyroelectric spectroscopy (PPES) for photon energies ranging from 2.5 to 1.6 eV. There is a fairly sharp minimum in the non-radiative efficiency when the a-Si:H is illuminated with near bandgap photons. We describe a model wherein this minimum arises from the variation in the amount of heat generated by free carrier thermalization as the incident photon energy is varied, and report measurements of the excitation kinetics of the non-radiative efficiency which support this proposal.


Sign in / Sign up

Export Citation Format

Share Document