Correlation between Light-Induced Degradation and Structural Inhomogeneities in Hydrogenated Amorphous Silicon Prepared under High-Rate Deposition Conditions

1998 ◽  
Vol 37 (Part 1, No. 2) ◽  
pp. 432-434 ◽  
Author(s):  
Nobuki Sakikawa ◽  
Masaki Tamao ◽  
Seiichi Miyazaki ◽  
Masataka Hirose
2003 ◽  
Vol 762 ◽  
Author(s):  
Guofu Hou ◽  
Xinhua Geng ◽  
Xiaodan Zhang ◽  
Ying Zhao ◽  
Junming Xue ◽  
...  

AbstractHigh rate deposition of high quality and stable hydrogenated amorphous silicon (a-Si:H) films were performed near the threshold of amorphous to microcrystalline phase transition using a very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) method. The effect of hydrogen dilution on optic-electronic and structural properties of these films was investigated by Fourier-transform infrared (FTIR) spectroscopy, Raman scattering and constant photocurrent method (CPM). Experiment showed that although the phase transition was much influenced by hydrogen dilution, it also strongly depended on substrate temperature, working pressure and plasma power. With optimized condition high quality and high stable a-Si:H films, which exhibit σph/σd of 4.4×106 and deposition rate of 28.8Å/s, have been obtained.


1996 ◽  
Vol 420 ◽  
Author(s):  
Florence Y. M. Chan ◽  
Y. W. Lam ◽  
Y. C. Chan ◽  
S. H. Lin ◽  
X. Y. Lin ◽  
...  

AbstractHigh rate deposition of a-Si:H films has become one of the key techniques for low-cost, large-scale production of thin film devices. Hydrogenated amorphous silicon films were fabricated with a thermocatalytic PCVD method of which the deposition rate was up to 1.5 nm/sec. The Heterojunction Monitored Capacitance method was employed to determine the midgap-state densities in the undoped semiconductor film from high frequency C-V characteristics. Experimental results showed that the thermocatalytic PCVD method is an effective way to produce high-rate deposited a-Si:H films.


1990 ◽  
Vol 192 ◽  
Author(s):  
N. Sakuma ◽  
H. Nozaki ◽  
T. Niiyama ◽  
H. Ito

ABSTRACTThe ratio of Si-H2 bonds to hydrogen content in hydrogenated amorphous silicon films, prepared by mercury-sensitized photochemical vapor deposition, depends on the deposition conditions, in particular on the distance between the substrate and the light-transparent window.The ratio is reduced from 20 % to 8 % by decreasing the distance from 30 mm to 8 mm. On the other hand, the hydrogen content remains constant at 15 at.%. Decreasing the distance has been found to be almost equivalent to increasing the light intensity, especially 254 nm-light intensity.


Sign in / Sign up

Export Citation Format

Share Document