scholarly journals Preparation and Characterization of Water-Insoluble Gardenia Blue Pigment

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6594
Author(s):  
Yakun Gao ◽  
Jinchuan Xu ◽  
Guorong Liu ◽  
Rong Nie ◽  
Jiaojiao Duan ◽  
...  

Based on molecular simulations, the synthetic route of water-insoluble gardenia blue pigment was prepared by the reaction of genipin and L-Phenylalanine methyl ester hydrochloride. A highly purified pigment was obtained after extraction by chloroform and purification by silica gel column chromatography, and the value of color is up to 288. A study on the structural characteristics of the pigment was implemented with a scanning electron microscope, ultraviolet-visible spectrophotometer, Fourier transform infrared spectrometer, X-ray photoelectron spectrometer, and quatropde-time of flight mass spectrometer. The results showed that the surface of the pigment was largely smooth and spherical; The λmax was 607 nm, and the main functional groups include O-C=O, C=O, C-N, C=C, OH, and benzene ring; We detrained six different molecular weight and chemical structures of pigments and speculated the particular structures and formation mechanisms of three kinds of pigment, whose molecular weights are 690.1156, 720.1226, and 708.1246 Da, respectively. The pigment was only able to be dissolved in ethanol, methanol, acetone, ethyl acetate, and other strong polar organic solvents, but was not able to be dissolved in water, ethyl ether, petroleum ether, and other weak polar organic solvents. In terms of light and thermal stabilities, water-insoluble gardenia blue pigment is significantly better than water-soluble gardenia blue pigment (p < 0.05). When it is under direct light for 7 days or incubated at 80–120 °C for 24 h, the pigment residual rates were 74.90, 95.26, 88.27, and 87.72%, respectively.

2012 ◽  
Vol 550-553 ◽  
pp. 742-746
Author(s):  
Hui Wen Wu ◽  
Hua Li ◽  
He Zhou Liu

A soluble polyimide with high molecular weight was synthesized from 4, 4'-(hexafluoroiso propylidene) diphthalic anhydride (6FDA) and 2, 2’-bis(3-amino-4-hydroxyphenyl) hexafluoropropane (BAPAF) via two-step polycondesation procedure involving the preparation of poly(amic acid) (PAA) followed by chemical imidization. Effect of synthesis parameters on polyimide molecular weight involving material ratio, imidization temperature and imidization catalyst were studied. Synthesized PI was analyzed with respect to their molecular weights, chemical structures and solubility through GPC, FTIR, XRD and solubility tests respectively. The results showed that a high-molecular-weight PI was successfully synthesized from 4, 4'-(hexafluoroisopropylidene) diphthalic anhydride and 2, 2’-bis (3-amino-4-hydroxyphenyl) hexafluoropropane with imidization at 80°C for 3h, material ratio of n(BAPAF):n(6FDA) equal to 1:1 and catalyst of n(triethylamine):n (pyridine) less than1:3. The obtained PI showed excellent solubility in polar aprotic organic solvents such as NMP, DMAc, DMSO, THF and Acetone. Poly(6FDA-BAPAF) PI, with high molecular weight and excellent solubility, which was synthesized under lower imidization temperature that was equal to 80°C,could be easily obtained and convenient to process, thus it is a potential material for membrane separation.


Synlett ◽  
2018 ◽  
Vol 29 (20) ◽  
pp. 2660-2668 ◽  
Author(s):  
Hsiao-hua Yu ◽  
Hailemichael Ayalew ◽  
Tian-lin Wang ◽  
Tsai-Hui Wang ◽  
Hsiu-Fu Hsu

A facile and environmentally benign Pd-catalyzed direct C–H arylation polymerization (DAP) has been developed for the syntheses of homo- and copolymers of anionic-group-functionalized 3,4-ethylenedioxythiophenes with high yields (up to 99%), high molecular weights, and narrow polydispersities. The effects of various Pd catalysts, phosphine ligands, and additives on the properties of the polymers have been examined. The method gives anionic poly(3,4-ethylenedioxythiophenes) with higher molecular weights than those produced by the previously reported chemical or electrochemical methods. The method was also used to synthesize polymers functionalized with carboxylic acid groups without the need for protection/deprotection steps. The resulting polymers can be processed from water or highly polar organic solvents. We also demonstrated a phosphine-free, water-mediated, Pd-catalyzed DAP. The anionic poly(3,4-ethylenedioxythiophenes) were stable in water, and are promising for applications in sensors, drug delivery, and cell engineering.


1993 ◽  
Vol 58 (10) ◽  
pp. 2321-2336 ◽  
Author(s):  
Zhong-wei Gu ◽  
John D. Spikes ◽  
Pavla Kopečková ◽  
Jindřich Kopeček

In cancer photodynamic therapy (PDT), improved efficiency of photosensitizer delivery to tumors may be obtained by binding them to targetable water soluble polymeric carriers. However, attachment of photosensitizers to Macromolecular carriers may alter their spectral and photosensitizing properties. In this study, a new monosubstituted phthalocyanine derivative, N-glycyl zinc(II) 4,9,16,23-tetraaminophthalocyanine (G-TAPC-Zn) was synthesized by the reaction of zinc(II) 4,9,16,23-tetraaminophthalocyanine (TAPC-Zn) with N-tert-butoxycarbonyl-glycine N'-hydroxybenzotriazole ester followed by deprotection of the tert-butoxycarbonyl (BOC) group. G-TAPC-Zn contains an aliphatic amino group suitable for attachment to water soluble polymeric carriers. By aminolysis of a polymeric precursor, an N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer containing oligopeptide (GFLG) side-chains terminated in p-nitrophenyl ester groups, with G-TAPC-Zn a polymeric derivative of the latter (P-GFLGG-TAPC-Zn) was synthesized. Spectral data indicated that in aqueous solutions P-GFLGG-TAPC-Zn formed aggregates. The degree of aggregation decreased with increasing concentration of detergents or organic solvents in buffer solutions. Consequently, the release of the drug from carrier catalyzed by thiol proteinases, papain or cathepsin B, took place only in the presence of detergents or organic solvents, i.e., under conditions with a lower probability of aggregate formation. Binding of G-TAPC-Zn to HPMA copolymers decreased the quantum yield of singlet oxygen generation from 0.24 to 0.063 and significantly increased its resistance to photobleaching.


Author(s):  
Aradhya Dev Srivastav ◽  
Vireshwar Singh ◽  
Deepak Singh ◽  
Balendu Shekher Giri ◽  
Dhananjay Singh

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1018
Author(s):  
Massimo Marcioni ◽  
Jenny Alongi ◽  
Elisabetta Ranucci ◽  
Mario Malinconico ◽  
Paola Laurienzo ◽  
...  

The hitherto known polyamidoamines (PAAs) are not suitable as structural materials because they are usually water-soluble or swellable in water. This paper deals with the synthesis and characterization of semi-crystalline hydrophobic PAAs (H-PAAs) by combining different bis-sec-amines with bis-acrylamides obtained from C6–C12 bis-prim-amines. H-PAAs were initially obtained in a solution of benzyl alcohol, a solvent suitable for both monomers and polymers. Their number average molecular weights, M¯n, which were determined with 1H-NMR by evaluating the percentage of their terminal units, varied from 6000 to >10,000. The solubility, thermal properties, ignitability and water resistance of H-PAAs were determined. They were soluble in organic solvents, semi-crystalline and thermally stable. The most promising ones were also prepared using a bulk process, which has never been previously reported for PAA synthesis. In the form of films, these H-PAAs were apparently unaffected by water. The films underwent tensile and wettability tests. They showed similar Young moduli (260–263 MPa), whereas the maximum stress and the stress at break depended on the number of methylene groups of the starting bis-acrylamides. Their wettability was somewhat higher than that of common Nylons. Interestingly, none of the H-PAAs considered, either as films or powders, ignited after prolonged exposure to a methane flame.


Author(s):  
Masaki Narisawa ◽  
Satoshi Oda ◽  
Shuhei Kitano ◽  
Kiyohito Okamura

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 85 ◽  
Author(s):  
Truc Cong Ho ◽  
Jin-Seok Park ◽  
Sung-Yeoul Kim ◽  
Hoyeol Lee ◽  
Ju-Sop Lim ◽  
...  

For tissue engineering applications, biodegradable scaffolds containing high molecular weights (MW) of collagen and sodium alginate have been developed and characterized. However, the properties of low MW collagen-based scaffolds have not been studied in previous research. This work examined the distinctive properties of low MW collagen-based scaffolds with alginate unmodified and modified by subcritical water. Besides, we developed a facile method to cross-link water-soluble scaffolds using glutaraldehyde in an aqueous ethanol solution. The prepared cross-linked scaffolds showed good structural properties with high porosity (~93%) and high cross-linking degree (50–60%). Compared with collagen (6000 Da)-based scaffolds, collagen (25,000 Da)-based scaffolds exhibited higher stability against collagenase degradation and lower weight loss in phosphate buffer pH 7.4. Collagen (25,000 Da)-based scaffolds with modified alginate tended to improve antioxidant capacity compared with scaffolds containing unmodified alginate. Interestingly, in vitro coagulant activity assay demonstrated that collagen (25,000 Da)-based scaffolds with modified alginate (C25-A63 and C25-A21) significantly reduced the clotting time of human plasma compared with scaffolds consisting of unmodified alginate. Although some further investigations need to be done, collagen (25,000 Da)-based scaffolds with modified alginate should be considered as a potential candidate for tissue engineering applications.


1957 ◽  
Vol 35 (4) ◽  
pp. 241-250 ◽  
Author(s):  
W. G. Martin ◽  
J. E. Vandegaer ◽  
W. H. Cook

Livetin, the major water-soluble protein of hen egg yolk, was found to contain three major components having mobilities of −6.3, −3.8, and −2.1 cm.2 sec.−1 volt−1 at pH 8, µ 0.1, and these have been designated α-, β-, and γ-livetin respectively. The α- and β-livetins were separated and purified electrophoretically after removal of γ-livetin by precipitation from 37% saturated ammonium sulphate or 20% isopropanol. The α-, β-, and mixed livetins resembled pseudoglobulins in solubility but γ-livetin was unstable and this loss of solubility has, so far, prevented its characterization. Molecular weights determined by light scattering, osmotic pressure, and Archibald sedimentation procedure yielded respectively: 8.7, 7.8, and 6.7 × 104 for α-livetin, and 4.8, 5.0, and4.5 × 104 for β-livetin. Under suitable conditions of sedimentation and electrophoresis, egg yolk has been shown to contain three components having the same behavior as the three livetins of the water-soluble fraction.


2003 ◽  
Vol 552 ◽  
pp. 77-83 ◽  
Author(s):  
J Dąbkowski ◽  
R Pruszkowska-Drachal ◽  
M Dąbkowska ◽  
Z Koczorowski ◽  
S Trasatti

Sign in / Sign up

Export Citation Format

Share Document