scholarly journals Influences of Molecular Weights on Physicochemical and Biological Properties of Collagen-Alginate Scaffolds

Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 85 ◽  
Author(s):  
Truc Cong Ho ◽  
Jin-Seok Park ◽  
Sung-Yeoul Kim ◽  
Hoyeol Lee ◽  
Ju-Sop Lim ◽  
...  

For tissue engineering applications, biodegradable scaffolds containing high molecular weights (MW) of collagen and sodium alginate have been developed and characterized. However, the properties of low MW collagen-based scaffolds have not been studied in previous research. This work examined the distinctive properties of low MW collagen-based scaffolds with alginate unmodified and modified by subcritical water. Besides, we developed a facile method to cross-link water-soluble scaffolds using glutaraldehyde in an aqueous ethanol solution. The prepared cross-linked scaffolds showed good structural properties with high porosity (~93%) and high cross-linking degree (50–60%). Compared with collagen (6000 Da)-based scaffolds, collagen (25,000 Da)-based scaffolds exhibited higher stability against collagenase degradation and lower weight loss in phosphate buffer pH 7.4. Collagen (25,000 Da)-based scaffolds with modified alginate tended to improve antioxidant capacity compared with scaffolds containing unmodified alginate. Interestingly, in vitro coagulant activity assay demonstrated that collagen (25,000 Da)-based scaffolds with modified alginate (C25-A63 and C25-A21) significantly reduced the clotting time of human plasma compared with scaffolds consisting of unmodified alginate. Although some further investigations need to be done, collagen (25,000 Da)-based scaffolds with modified alginate should be considered as a potential candidate for tissue engineering applications.

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7684
Author(s):  
Thanapon Muenwacha ◽  
Oratai Weeranantanapan ◽  
Nuannoi Chudapongse ◽  
Francisco Javier Diaz Sanchez ◽  
Santi Maensiri ◽  
...  

A high piezoelectric coefficient polymer and biomaterial for bone tissue engineering— poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP)—has been successfully fabricated into 3D scaffolds using the wet electrospinning method. Three-dimensional (3D) scaffolds have significant advantages for tissue engineering applications. Electrospinning is an advanced method and can fabricate 3D scaffolds. However, it has some limitations and is difficult to fabricate nanofibers into 3D shapes because of the low controllability of porosity and internal pore shape. The PVDF-HFP powders were dissolved in a mixture of acetone and dimethylformamide with a ratio of 1:1 at various concentrations of 10, 13, 15, 17, and 20 wt%. However, only the solutions at 15 and 17 wt% with optimized electrospinning parameters can be fabricated into biomimetic 3D shapes. The produced PVDF-HFP 3D scaffolds are in the cm size range and mimic the structure of the natural nests of termites of the genus Apicotermes. In addition, the 3D nanofiber-based structure can also generate more electrical signals than the conventional 2D ones, as the third dimension provides more compression. The cell interaction with the 3D nanofibers scaffold was investigated. The in vitro results demonstrated that the NIH 3T3 cells could attach and migrate in the 3D structures. While conventional electrospinning yields 2D (flat) structures, our bio-inspired electrospun termite nest-like 3D scaffolds are better suited for tissue engineering applications since they can potentially mimic native tissues as they have biomimetic structure, piezoelectric, and biological properties.


2021 ◽  
Vol 12 (3) ◽  
pp. 45
Author(s):  
Yasaman Delkash ◽  
Maxence Gouin ◽  
Tanguy Rimbeault ◽  
Fatemeh Mohabatpour ◽  
Petros Papagerakis ◽  
...  

Three-dimensional (3D) bioprinting is an emerging fabrication technique to create 3D constructs with living cells. Notably, bioprinting bioinks are limited due to the mechanical weakness of natural biomaterials and the low bioactivity of synthetic peers. This paper presents the development of a natural bioink from chicken eggwhite and sodium alginate for bioprinting cell-laden patches to be used in endothelialized tissue engineering applications. Eggwhite was utilized for enhanced biological properties, while sodium alginate was used to improve bioink printability. The rheological properties of bioinks with varying amounts of sodium alginate were examined with the results illustrating that 2.0–3.0% (w/v) sodium alginate was suitable for printing patch constructs. The printed patches were then characterized mechanically and biologically, and the results showed that the printed patches exhibited elastic moduli close to that of natural heart tissue (20–27 kPa) and more than 94% of the vascular endothelial cells survived in the examination period of one week post 3D bioprinting. Our research also illustrated the printed patches appropriate water uptake ability (>1800%).


2020 ◽  
Vol 4 (4) ◽  
pp. 152
Author(s):  
Ali Mirtaghavi ◽  
Jikui Luo ◽  
Rajendran Muthuraj

Current approaches in developing porous 3D scaffolds face various challenges, such as failure of mimicking extracellular matrix (ECM) native building blocks, non-sustainable scaffold fabrication techniques, and lack of functionality. Polysaccharides and proteins are sustainable, inexpensive, biodegradable, and biocompatible, with structural similarities to the ECM. As a result, 3D-structured cellulose (e.g., cellulose nanofibrils, nanocrystals and bacterial nanocellulose)-based aerogels with high porosity and interconnected pores are ideal materials for biomedical applications. Such 3D scaffolds can be prepared using a green, scalable, and cost-effective freeze-drying technique. The physicochemical, mechanical, and biological characteristics of the cellulose can be improved by incorporation of proteins and other polysaccharides. This review will focus on recent developments related to the cellulose-based 3D aerogels prepared by sustainable freeze-drying methods for tissue engineering applications. We will also provide an overview of the scaffold development criteria; parameters that influenced the aerogel production by freeze-drying; and in vitro and in vivo studies of the cellulose-based porous 3D aerogel scaffolds. These efforts could potentially help to expand the role of cellulose-based 3D scaffolds as next-generation biomaterials.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1374 ◽  
Author(s):  
Mahboobeh Rezaeeyazdi ◽  
Thibault Colombani ◽  
Adnan Memic ◽  
Sidi Bencherif

Polymeric scaffolds such as hydrogels can be engineered to restore, maintain, or improve impaired tissues and organs. However, most hydrogels require surgical implantation that can cause several complications such as infection and damage to adjacent tissues. Therefore, developing minimally invasive strategies is of critical importance for these purposes. Herein, we developed several injectable cryogels made out of hyaluronic acid and gelatin for tissue-engineering applications. The physicochemical properties of hyaluronic acid combined with the intrinsic cell-adhesion properties of gelatin can provide suitable physical support for the attachment, survival, and spreading of cells. The physical characteristics of pure gelatin cryogels, such as mechanics and injectability, were enhanced once copolymerized with hyaluronic acid. Reciprocally, the adhesion of 3T3 cells cultured in hyaluronic acid cryogels was enhanced when formulated with gelatin. Furthermore, cryogels had a minimal effect on bone marrow dendritic cell activation, suggesting their cytocompatibility. Finally, in vitro studies revealed that copolymerizing gelatin with hyaluronic acid did not significantly alter their respective intrinsic biological properties. These findings suggest that hyaluronic acid-co-gelatin cryogels combined the favorable inherent properties of each biopolymer, providing a mechanically robust, cell-responsive, macroporous, and injectable platform for tissue-engineering applications.


2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
A. Hamlekhan ◽  
M. Mozafari ◽  
N. Nezafati ◽  
M. Azami ◽  
H. Hadipour

In this study, poly(∊-caprolactone) (PCL), gelatin (GEL) and nanocrystalline hydroxyapatite (HAp) was applied to fabricate novel PCL-GEL-HAp nanaocomposite scaffolds through a new fabrication method. With the aim of finding the best fabrication method, after testing different methods and solvents, the best method and solvents were found, and the nanocomposites were prepared through layer solvent casting combined with freeze-drying. Acetone and distillated water were used as the PCL and GEL solvents, respectively. The mechanical test showed that the increasing of the PCL weight through the scaffolds caused the improvement of the final nanocomposite mechanical behavior due to the increasing of the ultimate stress, stiffness and elastic modulus (8 MPa for 0% wt PCL to 23.5 MPa for 50% wt PCL). The biomineralization investigation of the scaffolds revealed the formation of bone-like apatite layers after immersion in simulated body fluid (SBF). In addition, the in vitro cytotoxity of the scaffolds using L929 mouse fibroblast cell line (ATCC) indicated no sign of toxicity. These results indicated that the fabricated scaffold possesses the prerequisites for bone tissue engineering applications.


Author(s):  
Kivilcim Buyukhatipoglu ◽  
Robert Chang ◽  
Wei Sun ◽  
Alisa Morss Clyne

Tissue engineering may require precise patterning of cells and bioactive components to recreate the complex, 3D architecture of native tissue. However, it is difficult to image and track cells and bioactive factors once they are incorporated into the tissue engineered construct. These bioactive factors and cells may also need to be moved during tissue growth in vitro or after implantation in vivo to achieve the desired tissue properties, or they may need to be removed entirely prior to implantation for biosafety concerns.


2015 ◽  
Vol 3 (5) ◽  
pp. 859-870 ◽  
Author(s):  
Linhao Li ◽  
Yuna Qian ◽  
Chongwen Lin ◽  
Haibin Li ◽  
Chao Jiang ◽  
...  

Silk middle gland extracted sericin protein based electrospun nanofibrous scaffolds with excellent biocompatibility have been developed for tissue engineering applications.


2009 ◽  
Vol 15 (7) ◽  
pp. 1523-1532 ◽  
Author(s):  
Marc-Olivier Montjovent ◽  
Chiara Bocelli-Tyndall ◽  
Corinne Scaletta ◽  
Arnaud Scherberich ◽  
Silke Mark ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document