scholarly journals A Flexible Temperature Sensor for Noncontact Human-Machine Interaction

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7112
Author(s):  
Shiqi Chen ◽  
Xiaolong Han ◽  
Peng Hong ◽  
Yue Zhang ◽  
Xiangyu Yin ◽  
...  

Flexible sensors have attracted extensive attention because of their promising applications in the fields of health monitoring, intelligent robots, and electronic skin, etc. During the COVID-19 epidemic, noncontact control of public equipment such as elevators, game consoles, and doors has become particularly important, as it can effectively reduce the risk of cross-infection. In this work, a noncontact flexible temperature sensor is prepared via a simple dip-drying progress, in which poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS) and printer paper served as the sensing material and the flexible substrate, respectively. We combined the highly sensitive temperature-responsive property of PEDOT:PSS with the good hygroscopicity of printer paper. The prepared sensor shows high sensitivity and good stability in noncontact sensing mode within the temperature range of 20–50 °C. To prove the practicability of the noncontact temperature sensor, a 3 × 2 sensing array is prepared as a noncontact human-machine interface to realize the interaction between player and “Pound-A-Mole game” and a Bluetooth car. These two demos show the sensor′s ability to perceive nearby temperature changes, verifying its application potential as a noncontact human-machine interaction interface.

2020 ◽  
Vol 315 ◽  
pp. 112341
Author(s):  
Zhaojun Liu ◽  
Bian Tian ◽  
Xu Fan ◽  
Jiangjiang Liu ◽  
Zhongkai Zhang ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1246
Author(s):  
Siyoung Lee ◽  
Eun Kwang Lee ◽  
Eunho Lee ◽  
Geun Yeol Bae

With the advent of human–machine interaction and the Internet of Things, wearable and flexible vibration sensors have been developed to detect human voices and surrounding vibrations transmitted to humans. However, previous wearable vibration sensors have limitations in the sensing performance, such as frequency response, linearity of sensitivity, and esthetics. In this study, a transparent and flexible vibration sensor was developed by incorporating organic/inorganic hybrid materials into ultrathin membranes. The sensor exhibited a linear and high sensitivity (20 mV/g) and a flat frequency response (80–3000 Hz), which are attributed to the wheel-shaped capacitive diaphragm structure fabricated by exploiting the high processability and low stiffness of the organic material SU-8 and the high conductivity of the inorganic material ITO. The sensor also has sufficient esthetics as a wearable device because of the high transparency of SU-8 and ITO. In addition, the temperature of the post-annealing process after ITO sputtering was optimized for the high transparency and conductivity. The fabricated sensor showed significant potential for use in transparent healthcare devices to monitor the vibrations transmitted from hand-held vibration tools and in a skin-attachable vocal sensor.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Li Deng ◽  
Guohua Wang ◽  
Suihuai Yu

In order to consider the psychological cognitive characteristics affecting operating comfort and realize the automatic layout design, cognitive ergonomics and GA-ACA (genetic algorithm and ant colony algorithm) were introduced into the layout design of human-machine interaction interface. First, from the perspective of cognitive psychology, according to the information processing process, the cognitive model of human-machine interaction interface was established. Then, the human cognitive characteristics were analyzed, and the layout principles of human-machine interaction interface were summarized as the constraints in layout design. Again, the expression form of fitness function, pheromone, and heuristic information for the layout optimization of cabin was studied. The layout design model of human-machine interaction interface was established based on GA-ACA. At last, a layout design system was developed based on this model. For validation, the human-machine interaction interface layout design of drilling rig control room was taken as an example, and the optimization result showed the feasibility and effectiveness of the proposed method.


2008 ◽  
Vol 381-382 ◽  
pp. 383-386 ◽  
Author(s):  
Yao Joe Yang ◽  
B.T. Chia ◽  
D.R. Chang ◽  
H.H. Liao ◽  
Wen Ping Shih ◽  
...  

A flexible temperature sensor array and a scanning system are developed in this paper. A 16×16 temperature sensor array in a 25×20 mm2 area is fabricated on a flexible copper-PI substrate using MEMS fabrication technology. Platinum is employed as the temperature sensing material, which is often so called the resistance temperature detector (RTD). Copper patterns on both sides of the flexible substrate serve as the row and column interconnects for scanning circuitry. In each element of the temperature sensor array, the resistance of platinum, which is patterned by lift-off process, can be measured by the scanning system.


2013 ◽  
Vol 655-657 ◽  
pp. 264-268
Author(s):  
Shao Fen Lin ◽  
Qing Lin Chen ◽  
Zhao Yi Zhu

The software compiled by VB had good visualization and the finite element analysis of ANSYS was a rapid, precise and effective method, both of these advantages were combined by the interface technology between VB and ANSYS. Through parameterizing the structure, material and load of the lifting lug, a friendly human-machine interaction interface was developed in this paper. This software improved shipyard's engineering designers work efficiency at all levels, the safety of hull block turn-over and lifting was improved too.


Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hang Guo ◽  
Ji Wan ◽  
Haobin Wang ◽  
Hanxiang Wu ◽  
Chen Xu ◽  
...  

Handwritten signatures widely exist in our daily lives. The main challenge of signal recognition on handwriting is in the development of approaches to obtain information effectively. External mechanical signals can be easily detected by triboelectric nanogenerators which can provide immediate opportunities for building new types of active sensors capable of recording handwritten signals. In this work, we report an intelligent human-machine interaction interface based on a triboelectric nanogenerator. Using the horizontal-vertical symmetrical electrode array, the handwritten triboelectric signal can be recorded without external energy supply. Combined with supervised machine learning methods, it can successfully recognize handwritten English letters, Chinese characters, and Arabic numerals. The principal component analysis algorithm preprocesses the triboelectric signal data to reduce the complexity of the neural network in the machine learning process. Further, it can realize the anticounterfeiting recognition of writing habits by controlling the samples input to the neural network. The results show that the intelligent human-computer interaction interface has broad application prospects in signature security and human-computer interaction.


Sign in / Sign up

Export Citation Format

Share Document