scholarly journals Artificial Neural Network (ANN) and Finite Element (FEM) Models for GFRP-Reinforced Concrete Columns under Axial Compression

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7172
Author(s):  
Haytham F. Isleem ◽  
Bassam A. Tayeh ◽  
Wesam Salah Alaloul ◽  
Muhammad Ali Musarat ◽  
Ali Raza

In reinforced concrete structures, the fiber-reinforced polymer (FRP) as reinforcing rebars have been widely used. The use of GFRP (glass fiber-reinforced polymer) bars to solve the steel reinforcement corrosion problem in various concrete structures is now well documented in many research studies. Hollow concrete-core columns (HCCs) are used to make a lightweight structure and reduce its cost. However, the use of FRP bars in HCCs has not yet gained an adequate level of confidence due to the lack of laboratory tests and standard design guidelines. Therefore, the present paper numerically and empirically explores the axial compressive behavior of GFRP-reinforced hollow concrete-core columns (HCCs). A total of 60 HCCs were simulated in the current version of Finite Element Analysis (FEA) ABAQUS. The reference finite element model (FEM) was built for a wide range of test variables of HCCs based on 17 specimens experimentally tested by the same group of researchers. All columns of 250 mm outer diameter, 0, 40, 45, 65, 90, 120 mm circular inner-hole diameter, and a height of 1000 mm were built and simulated. The effects of other parameters cover unconfined concrete strength from 21.2 to 44 MPa, the internal confinement (center to center spiral spacing = 50, 100, and 150 mm), and the amount of longitudinal GFRP bars (ρv = 1.78–4.02%). The complex column response was defined by the concrete damaged plastic model (CDPM) and the behavior of the GFRP reinforcement was modeled as a linear-elastic behavior up to failure. The proposed FEM showed an excellent agreement with the tested load-strain responses. Based on the database obtained from the ABAQUS and the laboratory test, different empirical formulas and artificial neural network (ANN) models were further proposed for predicting the softening and hardening behavior of GFRP-RC HCCs.

2012 ◽  
Author(s):  
Norhisham Bakhary

Kertas kerja ini memaparkan kajian berkenaan keberkesanan Artificial Neural Network (ANN) dalam mengenal pasti kerosakan di dalam struktur. Data dari getaran seperti frekuensi semula jadi dan mod bentuk digunakan sebagai data masukan bagi ANN untuk meramalkan lokasi dan tahap kerosakan bagi struktur lantai. Analisis unsur terhingga (Finite Element Analysis) telah digunakan untuk memperoleh ciri–ciri dinamik bagi struktur–struktur rosak dan tidak rosak untuk ‘melatih’ model ‘neural network’. Senario kerosakan yang berbeza disimulasikan dengan mengurangkan kekukuhan elemen pada lokasi yang berbeza sepanjang struktur tersebut. Berbagai kombinasi data masukan bagi mod yang berbeza telah digunakan untuk memperolehi model ANN yang terbaik. Hasil kajian ini menunjukkan ANN mampu memberikan keputusan yang baik dalam meramal kerosakan pada struktur lantai tersebut. Kata kunci: Ramalan kerosakan struktur, Artificial Neural Network This paper investigates the effectiveness of artificial neural network (ANN) in identifying damages in structures. Global (natural frequencies) and local (mode shapes) vibration–based data has been used as the input to ANN for location and severity prediction of damages in a slab–like structure. A finite element analysis has been used to obtain the dynamic characteristics of intact and damaged structure to train the neural network model. Different damage scenarios have been introduced by reducing the local stiffness of the selected elements at different locations along the structure. Several combinations of input variables in different modes have been used in order to obtain a reliable ANN model. The trained ANN model is validated using laboratory test data. The results show that ANN is capable of providing acceptable result on damage prediction of tested slab structure. Key words: Structural damage detection, artificial neural network


2012 ◽  
Author(s):  
Norhisham Bakhary

Artificial Neural Network (ANN) telah digunakan dengan meluas bagi tujuan mengesan kerosakan dalam struktur menggunakan data–data mod dari gegaran. Walau bagaimanapun, ketidakpastian yang wujud dalam model unsur terhingga dan data dari lapangan yang tidak dapat dielakkan boleh menyebabkan kesilapan dalam meramalkan magnitud dan lokasi kerosakan. Dalam kajian ini kaedah statistik digunakan untuk mengambil kira ketidakpastian ini. ANN digunakan untuk meramalkan parameter–parameter kekukuhan dari frekuensi dan mod bentuk bagi sesebuah struktur. Untuk mengambil kira ketidakpastian dalam ramalan, kaedah statistik digunakan di mana kaedah Rossenblueth point estimation diperbandingkan dengan kaedah Monte Carlo diaplikasikan bagi mengambil kira ketidakpastian ini. Keputusan menunjukkan bahawa dengan mengambil kira ketidakpastian dalam membuat ramalan menggunakan ANN, kerosakan boleh diramalkan pada tahap keyakinan yang tinggi. Kata kunci: Artificial neural network; ketidakpastian; kesilapan rawak Artificial Neural Network (ANN) has been widely applied to detect damages in structures based on structural vibration modal parameters. However, uncertainties that inevitably exist in finite element model and measured vibration data might lead to false or unreliable prediction of structural damage. In this study, a statistical approach is proposed to include the effect of uncertainties in the ANN algorithm for damage prediction. ANN is used to predict the stiffness parameters of structures from measured structural vibration frequencies and mode shapes. Uncertainties in the measured data and finite element model of the structure are considered in the prediction. The statistics of the identified parameters are determined using Rossenblueth’s point estimation method and verified by Monte Carlo simulation. The results show that by considering these uncertainties in the ANN model, the damages can be detected with a higher confidence level. Key words: Artificial neural network; uncertainties; random error


Sign in / Sign up

Export Citation Format

Share Document