deterioration mechanism
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 60)

H-INDEX

17
(FIVE YEARS 4)

2022 ◽  
Vol 10 (1) ◽  
Author(s):  
Gabriela Vyskočilová ◽  
Cristina Carşote ◽  
Richard Ševčík ◽  
Elena Badea

AbstractIn this study we used an analytical approach based on complementary techniques that targets all structural levels of collagen in leather to investigate how vegetable-tanned leather deteriorates during soil burial tests. For the first time, a group of deterioration markers specific to molecular, fibrillar and fibrous structure of collagen in leather was associated with the deterioration of buried leather. The application of the second order derivative of FTIR-ATR spectra analysis allowed us to detect loosening of collagen–tannin matrix, de-tanning and gelatin formation based on the behaviour of collagen and tannin spectral components (intensity variation and shifts). Collagen denaturation observed by DSC analysis and its thermo-oxidative behaviour measured by TG/DTG analysis, as well as the altered morphology of collagen (namely melt-like fibres and distorted fibrillar ultrastructure) imaged by SEM confirmed the FTIR-ATR analyis results. These analytical outcomes enabled us to understand the effect of leather hardening/cementing through soil mineral penetration into its fibrous structure and thus correctly interprete the higher-than-expected shrinkage temperatures and intervals determinatd by MHT method. Thus, MHT method proved to be suitable for a quick evaluation method that can direcly support the first conservation decision after excavation. The combination of FTIR-ATR, DSC, TG/DTG and SEM can be particularly useful to provide insights on the deterioration mechanism of archaeological leather and support best decision on its long-term preservation.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1300
Author(s):  
Yang Yang ◽  
Niannian Zhang ◽  
Jianguo Wang

In this study, the dynamic mechanical properties of red sandstone at low temperatures were studied by performing SHPB dynamic impact tests. According to damage and energy theories, the influences of different low temperatures on the dynamic strength, damage variable, and energy dissipation of red sandstone were analyzed. Combined with a fracture morphology analysis, the deterioration mechanism of the dynamic mechanical strength of red sandstone was deduced at lower negative temperatures. The research results showed that lower negative temperatures (<−30 °C) caused “frostbite” in red sandstone, which resulted in a sharp reduction in the macroscopic, dynamic mechanical strength of rock under high strain. Transient engineering disasters can easily occur under such a dynamic disturbance. According to the fracture morphology analysis, low temperatures generated a large number of cracks at the interface between the components of red sandstone. The plastic deformation ability of the crack tip was poor, and stability loss and expansion under high strain rate were readily achieved, resulting in low-stress brittle failure. However, due to the complex mineral composition of the cementitious materials, they were more susceptible to low temperature. Therefore, under the double action of dynamic load and low temperatures, it was found that damage occurred in the cementitious materials first, and then fracture of the red sandstone as a whole resulted.


2021 ◽  
Vol 6 (11) ◽  
pp. 161
Author(s):  
Haoliang Wu ◽  
Jing Yu ◽  
Jiajia Zhou ◽  
Weiwen Li ◽  
Christopher K. Y. Leung

Conventionally, a soil nail is a piece of steel reinforcement installed inside a hole drilled into the slope and filled with cement paste (CP) grout. Chloride penetration is a major deterioration mechanism of conventional soil nails as the CP grout is easy to crack with an uncontrollable crack opening when the soil nail is subject to loading or ground movements. Engineered Cementitious Composites (ECC) are a class of fiber-reinforced material exhibiting excellent crack control even when loaded to several percent of strain, and therefore, ECCs have great potential to replace traditional CP grout in soil nails for achieving a long service life. In this study, the chloride ion transport characteristics and electrically accelerated corrosion process of steel rebar in ECC and CP grouts are systematically studied. The rapid chloride ion penetration test results showed a reduction of 76% and 58% passing charges in ECC with 0.15% and 0.3% pre-loading strain, respectively, as compared to that in un-cracked CP. Furthermore, the accelerated corrosion experimental data showed that ECC under pre-loading strain still exhibited a coefficient of chloride ion diffusion that is 20–50% lower than CP grout due to the ability to control crack width. Service life calculations based on experimentally measured parameters showed that the predicted corrosion rate and corrosion depth of soil nails in ECC grout were much lower than those in CP grout. The findings can facilitate the design of soil nails with excellent durability and long service life.


Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2624
Author(s):  
Qizhe Zhang ◽  
Shenghui Wang ◽  
Xinghao Dong ◽  
Mingliang Liu ◽  
Qi Ou ◽  
...  

The traction power supply system of an Electrical Multiple Unit (EMU) often suffers from overvoltage impact. As an important protection device for on-board electrical equipment, the working environment of a roof arrester is worse than that of a power system. In recent years, the explosion failure of the roof arresters of an EMU has occurred from time to time, which seriously endangers the safe operation of high-speed railways. In this paper, the electrical performance test and material micro test of roof arrester in three states of normal, defect, and exploded, are carried out in order to study the internal causes of roof arrester explosion and clarify its deterioration mechanism. Using the DC reference voltage test and leakage current test, the electrical performance differences of normal, defective, and exploded arresters are obtained. By studying the disassembly of an arrester, the appearance characteristics of arrester varistor in three states are obtained. The micro morphology and chemical elements of the varistor are analyzed by Scanning Electron Microscope and Energy Dispersive Spectrometer. The deterioration mechanism of the arrester varistor is then revealed, and preventive measures for the explosion failure of the roof arrester are put forward. The obtained results show that, during the long-term operation of the roof arrester of an EMU, the varistor may be damp, and therefore the aluminum electrode layer and side insulation layer of the varistor may deteriorate. After the deterioration of the aluminum electrode layer, the content of the O element increases, and multiple film structures are formed on the surface. After the deterioration of the side insulating layer, the content of the O element increases, and the surface becomes uneven. Improving the sealing performance requirements of the roof arrester and optimizing the maintenance process can reduce its explosion failure.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hongbo Wang ◽  
Zhipeng Li ◽  
Xiaoguo Wang ◽  
Qingsong Zhang ◽  
Lianzhen Zhang

Water-rich sand is a common stratum in marine underground engineering. Grouting is the most common method for solving geological disasters in water-rich sand. However, the marine environment differs greatly from the land environment. The erosion and seepage of seawater ion cause significant deterioration of grouted body, which reduces the physical and mechanical properties of grouted body. The maintenance of grouted body performance is the guarantee of long-term safe operation of the tunnel in the marine environment. In order to solve the problem of long-life grouting design for sand layer in seawater environment, an accelerated test of grouted body erosion under seawater erosion environment is designed to study the mesomorphological characteristics of seawater erosion on grouted body erosion and to reveal the mechanism of seawater erosion and solids. The evolution law of grouting plus solid strength under different slurry water-cement ratios and different seawater erosion time conditions is analyzed. The results show that the grouting plus solid effective time for water-cement ratios of 0.8 : 1, 1 : 1, 1.4 : 1, and 2 : 1 is 75a, 60a, 30a, and 15a; the index of strength degradation ratio of seawater environment to grouting plus solids is proposed, and the quantitative relationship between seawater erosion time and grouting plus solids strength is established, which provides theoretical basis for sand layer grouting reinforcement in seawater environment. We hope to provide some reference for the design and construction of sand grouting in seawater environment.


Sign in / Sign up

Export Citation Format

Share Document