scholarly journals Electromagnetic Wave Absorption and Mechanical Properties of CNTs@GN@Fe3O4/PU Multilayer Composite Foam

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7244
Author(s):  
Chunfu Gao ◽  
Xinsheng He ◽  
Fengchao Ye ◽  
Shuxin Wang ◽  
Guang Zhang

With the development of intelligent communications and stealth technology in the military field, electromagnetic wave pollution cannot be ignored, and absorbing materials have entered people’s field of vision and gradually become a research hotspot. The ideal absorbing material should have the characteristics of “strong, wide, thin, and light”, but a single absorbing material often cannot meet the above conditions. At present, absorbing metal powder combined with two-dimensional carbon nanomaterials (such as carbon nanotubes, graphene, etc.) has became a trend. This article focus on a three-layer composite of Fe3O4, Carbon nanotubes@ Fe3O4, Carbon nanotubes@Graphene nano-platelets@ Fe3O4, which was synthesized by solvothermal method. The results show that the electromagnetic wave absorption performance of the three-layer foam at a thickness of 3.0 mm is more excellent. The minimum of RL can reach −67.0 dB, and the effective bandwidth is above 5.0 GHz. All this is due to the synergy of dielectric and magnetic loss between Fe3O4, CNTs, and GN, the increase of interface polarization and the path of electromagnetic wave reflection and scattering by three-layer foam.

2017 ◽  
Vol 5 (16) ◽  
pp. 4068-4074 ◽  
Author(s):  
Xinliang Li ◽  
Xiaowei Yin ◽  
Meikang Han ◽  
Changqing Song ◽  
Hailong Xu ◽  
...  

Ti3C2TxMXenes modified within situgrown carbon nanotubes (CNTs) are fabricatedviaa simple catalytic chemical vapor deposition (CVD) process.


2021 ◽  
Vol 31 (4) ◽  
pp. 249-255
Author(s):  
Zuoqun Zhang ◽  
Chaoshan Yang ◽  
Hua Cheng ◽  
Xiaohan Huang ◽  
Yuhao Zhu

Now there’re many researches on the electromagnetic radiation protection function of the cement-based electromagnetic wave absorbing materials, such materials have been widely used in various types of buildings. This paper proposed an idea for preparing a cement-based composite material by mixing functional aggregates with high content of Fe2O3 and SiC, that is, adding Fe3O4 powder and nano-SiC of different contents in the clay, and then sintering at 1190℃; the prepared aggregates showed obvious magnetic loss and dielectric loss to electromagnetic waves, and the numerical tube pressure could reach 16.83MPa. The double-layer reflectivity test board made of functional aggregates showed excellent electromagnetic wave absorption performance, its reflection loss was less than -10dB in the frequency range of 8~18GHz (corresponding to energy absorption greater than 90% EM), and its maximum RL reached -12.13dB. In addition, the compressive strength of the cement-based composite material at the age of 28 days reached 50.1 MPa, which can meet the strength requirements of building materials.


2011 ◽  
Vol 20 (3) ◽  
pp. 096369351102000
Author(s):  
Liu Aihong

In this letter, the surface of carbon nanoutubes was successfully decorated by Fe3O4 via a simple and effective coprecipitation and hydrothermal treatment method. Then the resultant composite were characterized. The results showed that Fe3O4 nanoparticles in the surface of carbon nanotubes were uniform and universal; The composite was ferromagnetic and also had better absorbing properties in the 0-5GHz range. CNTs/Fe3O4 composite had significant potential for electromagnetic wave absorption application in tumor hyperthermia.


RSC Advances ◽  
2016 ◽  
Vol 6 (3) ◽  
pp. 1919-1924 ◽  
Author(s):  
C. Tsonos ◽  
N. Soin ◽  
G. Tomara ◽  
B. Yang ◽  
G. C. Psarras ◽  
...  

Ternary nanocomposite systems of PVDF/Fe3O4/CNT and PVDF/Fe3O4/GN, prepared with twin screw compounding method, exhibit enhanced microwave absorption properties.


Sign in / Sign up

Export Citation Format

Share Document