scholarly journals Tribo-oxide Competition and Oxide Layer Formation of Ti3SiC2/CaF2 Self-Lubricating Composites during the Friction Process in a Wide Temperature Range

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7466
Author(s):  
Rui Zhang ◽  
Wei Feng ◽  
Fuyan Liu

Ti3SiC2/CaF2 composites were prepared by the spark plasma sintering (SPS) process. Both the microstructure of Ti3SiC2/CaF2 and the influence of test temperature on the tribological behavior of the Ti3SiC2/CaF2composites were investigated. The synergistic effect of friction and oxidation was evaluated by analyzing the worn surface morphology. The results showed that Ti3SiC2/CaF2 were still brittle materials after adding CaF2, which was in agreement with Ti3SiC2. The hardness, relative density, flexural strength and compressive strength of the Ti3SiC2/CaF2 composites were slightly lower than those of Ti3SiC2, and the addition of CaF2 decreased the decomposition temperature of Ti3SiC2 from 1350 to 1300 °C. Simultaneously, as the temperature of the test increased, the friction coefficient of Ti3SiC2/CaF2 showed a downward trend (from 0.81 to 0.34), and its the wear rate was insensitive.

2018 ◽  
Vol 50 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Nouari Saheb ◽  
Muhammad Khan

In this work, compressive and thermal properties of aluminum, milled aluminum, and Al-10Al2O3 composite processed via ball milling (BM) and spark plasma sintering (SPS) were investigated. The microstructural features of powders and sintered samples were characterized using optical and scanning electron microscopy. A universal testing machine was used to determine the compressive properties of the consolidated samples. The thermal conductivity and coefficient of thermal expansion of the developed materials were characterized using a hot disc thermal constant analyzer and a dilatometer, respectively. The Al-10Al2O3 composite possessed hardness of 1309.7 MPa, yield strength of 311.4 MPa, and compressive strength of 432.87 MPa compared to hardness of 326.3 MPa, yield strength of 74.33 MPa, and compressive strength of 204.43 MPa for aluminum. The Al-10Al2O3 composite had thermal conductivity value 81.42 W/mK compared to value of 198.09 W/mK for aluminum. In the temperature range from 373 K to 723 K, the composite had lower CTEs ranging from 10 ? 10?6 to 22 ? 10?6/K compared to 20 ? 10?6 to 30 ? 10?6/K for aluminum.


2020 ◽  
Vol 72 (9) ◽  
pp. 1087-1094
Author(s):  
Susan Meireles C. Dantas ◽  
Marcio G. Di Vernieri Cuppari ◽  
Vania Trombini Hernandes

Purpose This study aims to investigate the friction coefficient of Al2O3–NbC nanocomposite obtained by spark plasma sintering sliding against a steel ball. Design/methodology/approach Tribological tests were carried out using a reciprocating nanotribometer in a ball on flat configuration with normal loads in the range from 10 to 100 mN under dry conditions. Surface changes were analyzed by confocal microscopy and 3D profilometry. Findings The values of the friction coefficient varied from 0.15 to 0.6 and are independent of the applied load. Originality/value The tribological behavior is attributed to fracture in the contact region and the effect of wear debris. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-08-2019-0356/


2019 ◽  
Vol 821 ◽  
pp. 321-326
Author(s):  
Olusoji Oluremi Ayodele ◽  
Mary Ajimegoh Awotunde ◽  
Mxolisi Brendon Shongwe ◽  
Adewale Oladapo Adegbenjo ◽  
Bukola J. Babalola ◽  
...  

Ti6Al4V alloy was consolidated by hybrid spark plasma sintering at a temperature of 1200 °C, pressure of 50 MPa, holding time of 5 min and heating rate of 100 °C/min. This resulted in the maximum value of sintered density. Microstructural evolutions of the sintered compact were analysed with SEM. Sliding wear test were accomplished at different sliding loads of 5, 8 and 10 N using ball on disc tribometer configuration with stainless steel as the counterface material. Wear debris obtained was found to contain mostly the sintered materials with minute traces of the counterface material. The coefficient of friction reaches the maximum with increase in applied load. Worn surface analyses revealed the wear mechanism was abrasive. The potentiodynamic polarisation of the sintered compact showed the sintered compact in 0.9 wt % NaCl solution exhibited more resistance to corrosion.


2019 ◽  
Vol 45 (17) ◽  
pp. 21781-21792 ◽  
Author(s):  
A. Benamor ◽  
Y. Hadji ◽  
N. Chiker ◽  
A. Haddad ◽  
B. Guedouar ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-18
Author(s):  
Pranav Dev Srivyas ◽  
M.S. Charoo

Advanced composites are the materials of the new generation. Hence, the focus of the study is to determine the tribological properties of the eutectic Al-Si alloy reinforced with (2, 4, 6, 8, and10 wt. %) of n-Al2O3 against chrome-plated steel ball under dry sliding conditions. The novelty of this work is the fabrication of the composite sample with this elemental composition, which is not done before. Spark plasma sintering (SPS) nonconventional fabrication method is used to fabricate advanced composite samples. Friction coefficient (COF) and wear rate of the composite samples were studied under high load, varying from 50 N to 300 N, using the ball-on-disc tribometer configuration, with other parameters such as stroke, frequency, sliding distance, and sliding velocity remaining constant at 2 mm, 30 Hz, 120 meter, and 0.120 m/s, respectively. Reduction in wear volume for the advanced composite was reported in the range 15.45–44.58% compared to the base alloy (eutectic Al-Si alloy). An increase in friction coefficient was reported in the range 28.80–35.65% compared to the base matrix alloy material. It was also reported that the wear rate increases and the friction coefficient of the composite sample decreases with an increase in load for the tribo-pair. It was observed that an increase in the wt. % of reinforcement influences the friction and wear behavior of the composite. Wear mechanism at high load was characterized by plastic deformation, adhesion, delamination, and abrasion wear. For pre- and postcharacterization of surface and worn tracks, scanning electron microscopy (SEM) electron dispersion spectroscopy (EDS), 3D surface profilometer, and optical microscopy were used. This work aimed to investigate the influence of load on the tribological properties of Al-Si eutectic reinforced n-Al2O3 under dry sliding conditions. Its main objective was to provide a new contribution to the tribological behavior of these composites fabricated using the nonconventional spark plasma sintering method.


2019 ◽  
Vol 7 (4) ◽  
pp. 1574-1584 ◽  
Author(s):  
Junmei Fan ◽  
Si Hui ◽  
Trevor P. Bailey ◽  
Alexander Page ◽  
Ctirad Uher ◽  
...  

Graphene aerogels grown on hollow silica spheres through spark plasma sintering lead to ultralow thermal conductivity and high compressive strength.


2007 ◽  
Vol 22 (11) ◽  
pp. 3130-3136 ◽  
Author(s):  
Tetsuji Saito

Sm-Fe-N powders were successfully consolidated at 873 K and below by the spark plasma sintering (SPS) method. Although the decomposition temperature of the hard magnetic Sm2Fe17N3 phase has been reported to be 873 K, partial decomposition of the Sm2Fe17N3 phase was noted in the bulk materials obtained by sintering at below that temperature. The resultant bulk materials showed a coercivity of around 0.24 MAm−1, significantly lower than that of the original Sm-Fe-N powder. It was found that decomposition of the Sm2Fe17N3 phase in the SPS method was significantly lowered by the addition of a small amount of Zn powder to the Sm-Fe-N powder. The bulk material obtained by sintering a mixture of Sm-Fe-N and Zn powder (10%Zn) at 723 K exhibited high coercivity, comparable with that of the original Sm-Fe-N powder.


Sign in / Sign up

Export Citation Format

Share Document