scholarly journals Compressive strength and thermal properties of spark plasma sintered Al-Al2O3 nanocomposite

2018 ◽  
Vol 50 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Nouari Saheb ◽  
Muhammad Khan

In this work, compressive and thermal properties of aluminum, milled aluminum, and Al-10Al2O3 composite processed via ball milling (BM) and spark plasma sintering (SPS) were investigated. The microstructural features of powders and sintered samples were characterized using optical and scanning electron microscopy. A universal testing machine was used to determine the compressive properties of the consolidated samples. The thermal conductivity and coefficient of thermal expansion of the developed materials were characterized using a hot disc thermal constant analyzer and a dilatometer, respectively. The Al-10Al2O3 composite possessed hardness of 1309.7 MPa, yield strength of 311.4 MPa, and compressive strength of 432.87 MPa compared to hardness of 326.3 MPa, yield strength of 74.33 MPa, and compressive strength of 204.43 MPa for aluminum. The Al-10Al2O3 composite had thermal conductivity value 81.42 W/mK compared to value of 198.09 W/mK for aluminum. In the temperature range from 373 K to 723 K, the composite had lower CTEs ranging from 10 ? 10?6 to 22 ? 10?6/K compared to 20 ? 10?6 to 30 ? 10?6/K for aluminum.

2010 ◽  
Vol 638-642 ◽  
pp. 2115-2120 ◽  
Author(s):  
Kiyoshi Mizuuchi ◽  
Kanryu Inoue ◽  
Yasuyuki Agari ◽  
Shinji Yamada ◽  
Motohiro Tanaka ◽  
...  

Diamond-particle-dispersed copper (Cu) matrix composites were fabricated from Cu-coated diamond particles by spark plasma sintering (SPS) process, and the microstructure and thermal properties of the composites fabricated were examined. These composites can well be consolidated in a temperature range between 973K and 1173K and scanning electron microscopy detects no reaction at the interface between the diamond particle and the Cu matrix. The relative packing density of the diamond-Cu composite increases with increasing sintering temperature and holding time, reaching 99.2% when sintered at a temperature of 1173K for a holding time of 2.1ks. Thermal conductivity of the diamond-Cu composite containing 43.2 vol. % diamond increases with increasing relative packing density, reaching a maximum (654W/mK) at a relative packing density of 99.2%. This thermal conductivity is 83% the theoretical value estimated by Maxwell-Eucken equation. The coefficient of thermal expansion of the composites falls in the upper line of Kerner’s model, indicating strong bonding between the diamond particle and the Cu matrix in the composite.


2020 ◽  
Vol 54 (19) ◽  
pp. 2539-2548
Author(s):  
Li-Fu Yi ◽  
Takashi Yamamoto ◽  
Tetsuhiko Onda ◽  
Zhong-Chun Chen

Electroless nickel-coated carbon fibers/aluminum composites were prepared by spark plasma sintering, and the effect of nickel coating on microstructure and thermal properties of the composites has been investigated. Nickel coating on carbon fibers resulted in more homogeneous distributions of carbon fibers in aluminum matrix, higher relative density of carbon fibers/aluminum composites, and stronger interfacial bonding between carbon fibers and aluminum. Microstructural observations exhibited that the majority of carbon fibers were randomly distributed on the sections (X-Y direction) perpendicular to spark plasma sintering pressing direction (Z direction), thus leading to an anisotropic behavior in thermal conductivity of the composites. The thermal conductivity values in the X-Y direction of the carbon fibers/aluminum composites were much higher than those in the Z direction. As a result, the nickel-coated carbon fibers/aluminum composites with a nickel-coating thickness of ∼0.2 µm showed higher thermal conductivity and lower coefficient of thermal expansion values in comparison with those of the uncoated carbon fibers/aluminum samples.


2014 ◽  
Vol 722 ◽  
pp. 25-29 ◽  
Author(s):  
Q.L. Che ◽  
X.K. Chen ◽  
Y.Q. Ji ◽  
Y.W. Li ◽  
L.X. Wang ◽  
...  

The carbide forming is proposed to improve interfacial bonding between diamond particles and copper-matrix for diamond/copper composites. The volume fraction of diamond and minor titanium are optimized. The microstructures, thermal properties, interface reaction production and its effect of minor titanium on the properties of the composites are investigated. The results show that the bonding force and thermal conductivity of the diamond/Cu-Ti alloys composites is much weaker and lower than that of the coated-diamond/Cu. the thermal conductivity of coated-60 vol. % diamond/Cu composites is 618 W/m K which is 80 % of the theoretical prediction value. The high thermal conductivity has been achieved by forming the titanium carbide at diamond/copper interface to gain a good interface.


2019 ◽  
Vol 7 (4) ◽  
pp. 1574-1584 ◽  
Author(s):  
Junmei Fan ◽  
Si Hui ◽  
Trevor P. Bailey ◽  
Alexander Page ◽  
Ctirad Uher ◽  
...  

Graphene aerogels grown on hollow silica spheres through spark plasma sintering lead to ultralow thermal conductivity and high compressive strength.


2013 ◽  
Vol 873 ◽  
pp. 361-365 ◽  
Author(s):  
Wei Chen Zhai ◽  
Zhao Hui Zhang ◽  
Fu Chi Wang ◽  
Shu Kui Li

Si/Al composites with different Si particle sizes were fabricated using spark plasma sintering process for electronic packaging. The density, thermal conductivity, coefficient of thermal expansion and flexural strength of the composites were investigated. Effect of Si particle size on structure and properties of the Si/Al composites were studied. The results showed that the Si/Al composites synthesized by spark plasma sintering were composed of Si and Al. Al was uniformly distributed among the Si phase, leading to a high thermal conductivity (>120 W/m·k). The relative density of the Si/Al composites decreased with increasing Si particle size. Small Si particle size produced small grains, leading to a low coefficient of thermal expansion and a high strength. There is an optimal matching among the thermal conductivity, coefficient of thermal expansion and flexural strength when the Si particle size was 44 um.


2019 ◽  
Vol 54 (17) ◽  
pp. 2365-2376 ◽  
Author(s):  
MO Durowoju ◽  
TB Asafa ◽  
ER Sadiku ◽  
S Diouf ◽  
MB Shongwe ◽  
...  

Graphite–aluminium (Gr–Al) composites are being used for diverse engineering applications because of their light weight, good electrical conductivity and thermal properties. However, their applications are limited by high coefficient of thermal expansion and low microhardness values which can be enhanced by adding cheap and efficient fillers. This paper reports the effect of addition of eggshell (ES) particles on the properties of sintered Gr–Al-based composites. Five different composites (Gr–Al, Gr–Al  +  20 wt.%Si, Gr–Al + 20 wt.%SiC, Gr–Al + 20Si wt.% + 20 wt.%ES and Gr–Al + 20SiC wt.% + 20 wt.%ES) were sintered at a temperature of 540 ℃, holding time of 10 min, heating rate of 52 ℃/min and pressure of 50 MPa using spark plasma sintering system. The sintered samples were characterized based on morphology, microhardness, relative density, coefficient of thermal expansion and electrical conductivity. Based on SEM images, graphite particles of flake-like structure were largely undeformed while Al particles were smaller, round and irregular in shape and fairly uniformly distributed in the composites. The microhardness value of sintered Gr–Al + 20 wt.%SiC + 20 wt.%ES composite was 39.55 HV compared to 30.46 HV for Gr–Al, the least of the samples. The Gr–Al + 20 wt.%SiC + 20 wt.%ES composite also has a very low thermal expansion coefficient (0.98 × 10−5/K) but lowest electrical conductivity at temperature beyond 150 ℃. Highest densification and minimum relative density (94%) were obtained in Gr–Al + 20 wt.%Si + 20 wt.%ES composite. These enhanced performances are largely due to the incorporation of ES particles. This study therefore demonstrated that ESs particles enhanced microhardness and lowered thermal expansion of Gr–Al-based composites which have promising applications in industries especially for thermal management.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 239 ◽  
Author(s):  
Kwangjae Park ◽  
Dasom Kim ◽  
Kyungju Kim ◽  
Hansang Kwon

Aluminum (Al)/stainless steel (SUS) clad materials were fabricated via the process of spark plasma sintering (SPS) using Al powder/bulk and an SUS sheet. Three Al/SUS clad types were fabricated: powder/bulk (P/B), bulk/bulk (B/B), and bulk/powder/bulk (B/P/B). During the SPS, Al and SUS reacted with each other, and intermetallic compounds were created in the clads. The thermal conductivity and thermal-expansion coefficient were measured using a laser flash analyzer and dynamic mechanical analyzer, respectively. The Al/SUS (P/B) clad had a thermal conductivity of 159.5 W/mK and coefficient of thermal expansion of 15.3 × 10−6/°C. To analyze the mechanical properties, Vickers hardness and three-point bending tests were conducted. The Al/SUS (P/B) clad had a flexural strength of about 204 MPa. The Al/SUS clads fabricated via SPS in this study are suitable for use in applications in various engineering fields requiring materials with high heat dissipation and high heat resistance.


2017 ◽  
Vol 62 (2) ◽  
pp. 1311-1314
Author(s):  
A. Strojny-Nędza ◽  
K. Pietrzak ◽  
M. Teodorczyk ◽  
M. Basista ◽  
W. Węglewski ◽  
...  

AbstractThis paper describes the process of obtaining Cu-SiC-Cu systems by way of spark plasma sintering. A monocrystalline form of silicon carbide (6H-SiC type) was applied in the experiment. Additionally, silicon carbide samples were covered with a layer of tungsten and molybdenum using chemical vapour deposition (CVD) technique. Microstructural examinations and thermal properties measurements were performed. A special attention was put to the metal-ceramic interface. During annealing at a high temperature, copper reacts with silicon carbide. To prevent the decomposition of silicon carbide two types of coating (tungsten and molybdenum) were applied. The effect of covering SiC with the aforementioned elements on the composite’s thermal conductivity was analyzed. Results were compared with the numerical modelling of heat transfer in Cu-SiC-Cu systems. Certain possible reasons behind differences in measurements and modelling results were discussed.


2008 ◽  
Vol 368-372 ◽  
pp. 701-703 ◽  
Author(s):  
Kaleem Ahmad ◽  
Wei Pan ◽  
Chun Lei Wan

Multi-walled carbon nanotube (MWNT) reinforced alumina composites with different MWNT contents (5 and 10 vol %) were fabricated by spark plasma sintering. The room temperature dc electrical conductivity, thermal conductivity, and mechanical properties were investigated. Results showed that the electrical conductivity has improved around twelve orders of magnitude by addition of 5 vol% of MWNT. The fracture toughness changed from 3.2 to 4.4 MPa m1/2 with 39% improvement over monolithic Al2O3. The thermal conductivity decreased with increase of MWNT contents. The low values of thermal conductivity suggest that interfacial thermal barrier play an important role in determining these properties. MWNT can be used to improve concurrently electrical, mechanical properties of Al2O3 but with lower values of thermal properties.


2017 ◽  
Vol 49 (2) ◽  
pp. 117-128 ◽  
Author(s):  
Nouari Saheb ◽  
Umer Hayat

In this work, we report temperature-dependent thermal properties of alumina powder and bulk alumina consolidated by spark plasma sintering method. The properties were measured between room temperature and 250?C using a thermal constants analyzer. Alumina powder had very low thermal properties due to the presence of large pores and absence of bonding between its particles. Fully dense alumina with a relative density of 99.6 % was obtained at a sintering temperature of 1400?C and a holding time of 10 min. Thermal properties were found to mainly dependent on density. Thermal conductivity, thermal diffusivity, and specific heat of the fully dense alumina were 34.44 W/mK, 7.62 mm2s-1, and 1.22 J/gK, respectively, at room temperature. Thermal conductivity and thermal diffusivity decreased while specific heat increased with the increase in temperature from room temperature to 250?C.


Sign in / Sign up

Export Citation Format

Share Document