scholarly journals Sulfonitrocarburizing of High-Speed Steel Cutting Tools: Kinetics and Performances

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7779
Author(s):  
Mihai Ovidiu Cojocaru ◽  
Mihai Branzei ◽  
Sorin Ciuca ◽  
Ioana Arina Gherghescu ◽  
Mariana Ion ◽  
...  

The scholarly literature records information related to the performance increase of the cutting tools covered by the superficial layers formed “in situ” when applying thermochemical processing. In this context, information is frequently reported on the carbamide role in processes aiming carbon and nitrogen surface saturation. Sulfur, together with these elements adsorbed and diffused in the cutting tools superficial layers, undoubtedly ensures an increase of their operating sustainability. The present paper discusses the process of sulfonitrocarburizing in pulverulent solid media of high-speed tools steel (AISI T1, HS18-0-1) and its consequences. The peculiarity of the considered process is that the source of nitrogen and carbon is mainly carbamide (CON2H4), which is found in solid powdery mixtures together with components that do not lead to cyan complex formation (non-toxic media), and the sulfur source is native sulfur. The kinetics of the sulfonitrocarburizing process, depending on the carbamide proportion in the powdered solid mixture and the processing temperature, was studied. The consequences of the achieved sulfonitrocarburized layers on the cutting tools’ performance are expressed by the maximum permissible cutting speed and the maximum cut length. An interesting aspect is highlighted, namely the possibility of using chemically active mixtures. Their components, by initiation of the metallothermic reduction reaction, become able to provide both elements of interest and the amount of heat needed for the ultrafast saturation of the targeted metal surfaces.

2015 ◽  
Vol 669 ◽  
pp. 278-285
Author(s):  
Anton Panda ◽  
Ján Duplák ◽  
Miroslav Kormoš ◽  
Slavko Jurko

Essential factors of each new discovery or piece of knowledge in science are predetermined, prepared and realized experiment. Every successfully realized experiment with obtained outputs and measurements indicates the gauge of asset that has been achieved by its execution. After analyzing of outputs final dependencies can be described that generalize whole experiment and allow entire process to be analytically identified. The production of bearings is very difficult process. Especially production of bearing rings is very complicated. Optimization of this process means significant savings for the company. Bearing rings are produced by turning. One of the most important parts of the turning process is cutting tool. On the base of cutting tools are determined many factors for example: quality, price, cutting speed, etc. All these factors of cutting tools are the only consequence of these cutting tools durability. Cutting tool durability determines its cutting properties and machinable ability. Specification of tool wear by means of calculation is very difficult. Durability of cutting tools is defined in standard ISO 3685. In standard ISO 3685 is definedT-vcdependence for different cutting materials and standard included process evaluation of tool durability for cutting materials made of high speed steel, sintered carbide and cutting ceramic. The article describes evaluation ofT-vcdependence on the selected type of cutting materials and theirs comparison with measured values T-vc dependence that are defined in standard ISO 3685.


1959 ◽  
Vol 81 (3) ◽  
pp. 263-279 ◽  
Author(s):  
D. M. Eggleston ◽  
R. Herzog ◽  
E. G. Thomsen

Orthogonal-cutting experiments using SAE 1112 free-cutting steel, 2024-T4 and 6061-T6 aluminum alloys, and alpha-brass (85 Cu-15 Zn) at feeds of 0.002 to 0.010 ipr, were performed on a lathe with 18-4-1 high-speed-steel cutting tools. The mean cutting speeds and rake angles for SAE 1112 varied from 33.7 to 170.8 fpm and 5 to 40 deg, respectively, while the remainder of the alloys were tested at conditions yielding a continuous chip without a built-up edge at speeds ranging from approximately 470 to 790 fpm. It was found that the angle λ between the shear plane and the resultant tool force R was only approximately constant for each test condition and varied with cutting speed. Hence the equation λ = ϕ + β − α = const and the linear relationship between ϕ and β − α are only approximately satisfied. Furthermore, neither the Ernst and Merchant minimum-energy criterion, nor the Lee and Shaffer nor the Hill ideal plastic-solid solution, is in agreement with all the experimental observations.


2019 ◽  
Vol 13 (3) ◽  
pp. 213-217
Author(s):  
Sanja Šolić ◽  
Zdravko Schauperl ◽  
Vlado Tropša

High speed steel (HSS) is a very important industrial tool material and has been constantly improved for different wear resistance applications and cutting tools, i.e. drills, milling cutters, hobs and for the cutting tools in which the economical cutting speed is too low for choosing the carbide tools. The properties of HSS depend significantly on the parameters of the conducted heat treatment. In this paper, the influence of deep cryogenic treatment in combination with nitriding of metallurgical powder metallurgy HSS on the wear resistance was measured. Additionally, the cutting performance in a single point cutting tool machinability test at the configuration of the dry low-speed turning of steel was investigated. The results showed that deep cryogenic treatment itself, and in combination with nitriding, resulted in the reduction of the wear rate. The results of the single point cutting tool machinability test showed that deep cryogenic treated and nitrided HSS inserts performed worse than the classically heat-treated inserts and deep cryogenic treated HSS inserts exhibited approximately the same flank wear as the nitrided ones.


2019 ◽  
Vol 14 (2) ◽  
pp. 14-21
Author(s):  
Aseel Jameel Haleel

This paper focuses on the optimization of drilling parameters by utilizing “Taguchi method” to obtain the minimum surface roughness. Nine drilling experiments were performed on Al 5050 alloy using high speed steel twist drills. Three drilling parameters (feed rates, cutting speeds, and cutting tools) were used as control factors, and L9 (33) “orthogonal array” was specified for the experimental trials. Signal to Noise (S/N) Ratio and “Analysis of Variance” (ANOVA) were utilized to set the optimum control factors which minimized the surface roughness. The results were tested with the aid of statistical software package MINITAB-17. After the experimental trails, the tool diameter was found as the most important factor that has effect on the surface roughness. The optimal drilling factors that minimized the surface roughness are (20mm/min cutting speed, 0.2 mm/rev feed rate, and 10mm tool diameter).


2016 ◽  
Vol 686 ◽  
pp. 240-245
Author(s):  
Tomáš Vopát ◽  
Jozef Peterka ◽  
Vladimír Šimna ◽  
Ivan Buranský

The article deals with the tool life of ball nose end mills and surface roughness of steel C45 depending on up-copying and down-copying. The cemented carbide and high speed steel was used as tool material. Furthermore, the new and sharpened cutting tools were also compared. In the experiment, the cutting speed, feed rate, axial and radial depth of cut were not changed. The results show different achieved surface roughness of machined material C45 and tool life of ball nose end mills depending on the copy milling strategy for various tool materials.


Alloy Digest ◽  
1988 ◽  
Vol 37 (5) ◽  

Abstract UNS No. T11310 is the high vanadium type of molybdenum high-speed steel. It is a deep-hardening steel and offers high cutting ability and excellent finishing properties. It is a general-purpose steel for cutting tools and is used in such applications as taps, lathe tools and reamers. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating and machining. Filing Code: TS-490. Producer or source: Tool steel mills.


Alloy Digest ◽  
1960 ◽  
Vol 9 (2) ◽  

Abstract ELECTRITE COBALT is a 5% cobalt type high-speed steel recommended for heavy duty cutting tools. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-89. Producer or source: Latrobe Steel Company.


Alloy Digest ◽  
1981 ◽  
Vol 30 (9) ◽  

Abstract GUTERL M-2 is a molybdenum-tungsten type of high-speed steel with fairly good resistance to decarburization. It is a general-purpose high-speed steel and it provides excellent resistance to abrasion and shock. It is used widely for cutting tools. Among its many applications are hack saws, circular saws, lathe tools, gear cutters, planer tools and wood knives. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-387. Producer or source: Guterl Special Steel Corporation.


Alloy Digest ◽  
1979 ◽  
Vol 28 (7) ◽  

Abstract VASCO 8-N-2 is a molybdenum high-speed steel containing a low percentage of tungsten. It can be used successfully for a variety of cutting tools; in fact, it is a general-purpose high-speed steel. Its composition represents the first molybdenum high-speed steel to be manufactured and find practical use in the field of cutting tools. Its many uses include drills, milling cutters, lathe tools, blanking dies and special shear blades. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-351. Producer or source: Teledyne Vasco.


Alloy Digest ◽  
1978 ◽  
Vol 27 (12) ◽  

Abstract STORA ASP 60 is a molybdenum-tungsten high-speed steel with high percentages of carbon, cobalt and vanadium. It is a powder metallurgy steel, has high hardenability and can be hardened by cooling in air or oil from the austenitizing temperature. It has an excellent combination of wear resistance, toughness, hot hardness and resistance to tempering. It is recommended for cutting tools for hard-to-machine material and high cutting speeds. This datasheet provides information on composition, physical properties, microstructure, hardness, and elasticity. It also includes information on forming, heat treating, and machining. Filing Code: TS-342. Producer or source: Stora Kopparberg, Special Steels Division.


Sign in / Sign up

Export Citation Format

Share Document