scholarly journals Full-Scale Measurements of Translational and Torsional Dynamics Characteristics of a High-Rise Building during Typhoon Sarika

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 493
Author(s):  
Jiaxing Hu ◽  
Zhengnong Li ◽  
Zhefei Zhao

The field measurement of wind-induced response is of great significance to the wind resistance design of high-rise buildings, in particular torsional responses measured from high-rise buildings under typhoons. The measured high-rise building, with a height of 108 m, has 32 stories and is supported by giant trusses with four massive columns. Acceleration responses along translational and torsional directions were monitored synchronously and continuously during the passage of Typhoon Sarika on 18 October 2016. The wind speed and wind direction at the height of 115 m, the translational accelerations on a total of six floors and the angular accelerations on a total of four floors were recorded. The time and frequency domain characteristics of translational acceleration and torsional angular accelerations were analyzed. The amplitude-dependent translational and torsional modal frequencies of the measured building were identified by NExT-ERA, SSI, and RDT methods. The full-scale study is expected to provide useful information on the wind-resistant design of high-rise buildings in typhoon-prone regions.

2021 ◽  
Vol 12 (1) ◽  
pp. 324
Author(s):  
Jiaxing Hu ◽  
Zhengnong Li ◽  
Zhefei Zhao

A full-scale measurement of wind characteristics atop a high-rise building (with a height of 115 m) was conducted during the passage of Typhoon Sarika on 18 October 2016. Wind field characteristics, wind speed, and wind direction atop the building were recorded synchronously, and turbulence intensity, turbulence integral scale, gust factor, and power spectrum were investigated. Meanwhile, the time and frequency domain characteristics of the wind field were analyzed. The stationarity test results of Typhoon Sarika at different time steps are researched in a runs test. And the time-frequency analysis of non-stationary samples of fluctuating wind speed are conducted by wavelet transform, the measured data are valuable for the wind-resistant design of high-rise buildings in typhoon-prone regions.


1984 ◽  
pp. 217-228
Author(s):  
W.A. Dalgliesh ◽  
K.R. Cooper ◽  
J.T. Templin

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1633
Author(s):  
Yang Ding ◽  
Shuang-Xi Zhou ◽  
Yong-Qi Wei ◽  
Tong-Lin Yang ◽  
Jing-Liang Dong

Wind field (e.g., wind speed and wind direction) has the characteristics of randomness, nonlinearity, and uncertainty, which can be critical and even destructive on a long-span bridge’s hangers, such as vortex shedding, galloping, and flutter. Nowadays, the finite element method is widely used for model calculation, such as in long-span bridges and high-rise buildings. In this study, the investigated bridge hanger model was established by COMSOL Multiphysics software, which can calculate fluid dynamics (CFD), solid mechanics, and fluid–solid coupling. Regarding the wind field of bridge hangers, the influence of CFD models, wind speed, and wind direction are investigated. Specifically, the bridge hanger structure has symmetrical characteristics, which can greatly reduce the calculation efficiency. Furthermore, the von Mises stress of bridge hangers is calculated based on fluid–solid coupling.


2020 ◽  
Vol 2020 ◽  
pp. 1-24
Author(s):  
Fu-Bin Chen ◽  
Xiao-Lu Wang ◽  
Yun Zhao ◽  
Yuan-Bo Li ◽  
Qiu-Sheng Li ◽  
...  

High-rise buildings are very sensitive to wind excitations, and wind-induced responses have always been the key factors for structural design. Facade openings have often been used as aerodynamic measures for wind-resistant design of high-rise buildings to meet the requirement of structural safety and comfort. Obvious wind speed amplifications can also be observed inside the openings. Therefore, implementing wind turbines in the openings is of great importance for the utilization of abundant wind energy resources in high-rise buildings and the development of green buildings. Based on numerical simulation and wind tunnel testing, the wind loads and wind speed amplifications on high-rise buildings with openings are investigated in detail. The three-dimensional numerical simulation for wind effects on high-rise building with openings was firstly carried out on FLUENT 15.0 platform by SST k − ε model. The mean wind pressure coefficients and the wind flow characteristics were obtained. The wind speed amplifications at the opening were analyzed, and the distribution law of wind speed in the openings is presented. Meanwhile, a series of wind tunnel tests were conducted to assess the mean and fluctuating wind pressure coefficients in high-rise building models with various opening rates. The variation of wind pressure distribution at typical measuring layers with wind direction was analyzed. Finally, the wind speed amplifications in the openings were studied and verified by the numerical simulation results.


2018 ◽  
Vol 2018 ◽  
pp. 1-14
Author(s):  
Xianglei Wei ◽  
An Xu ◽  
Ruohong Zhao

The traditional wind-induced response analysis of high-rise buildings conventionally considers the wind load as a stationary stochastic process. That is, for a certain wind direction angle, the reference wind speed (usually refers to the mean wind speed at the building height) is assumed to be a constant corresponding to a certain return period. Combined with the recorded data in wind tunnel test, the structural response can be computed using the random vibration theory. However, in the actual typhoon process, the average wind speed is usually time-variant. This paper combines the interval process model and the nonrandom vibration analysis method with the wind tunnel test and proposes a method for estimating the response boundary of the high-rise buildings under nonstationary wind loads. With the given upper and lower bounds of time-variant wind excitation, this method can provide an effective calculation tool for estimating wind-induced vibration bounds for high-rise buildings under nonstationary wind load. The Guangzhou East tower, which is 530 m high and the highest supertall building in Guangzhou, China, was taken as an example to show the effectiveness of the method. The obtained boundary response can help disaster prevention and control during the passage of typhoons.


2011 ◽  
Vol 54 (10) ◽  
pp. 2587-2596 ◽  
Author(s):  
ZhengNong Li ◽  
DieFeng Luo ◽  
WenHai Shi ◽  
ZhiQi Li ◽  
XiaoHan Liang

Sign in / Sign up

Export Citation Format

Share Document