scholarly journals A Comparison of the Probes with a Cantilever Beam and a Double-Sided Beam in the Tool Edge Profiler for On-Machine Measurement of a Precision Cutting Tool

Machines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 271
Author(s):  
Bo Wen ◽  
Sho Sekine ◽  
Shinichi Osawa ◽  
Yuki Shimizu ◽  
Hiraku Matsukuma ◽  
...  

This paper describes a comparison of the mechanical structures (a double-sided beam and a cantilever beam) of a probe in a tool edge profiler for the measurement of a micro-cutting tool. The tool edge profiler consists of a positioning unit having a pair of one-axis DC servo motor stages and a probe unit having a laser displacement sensor and a probe composed of a stylus and a mechanical beam; on-machine measurement of a tool cutting edge can be conducted with a low contact force through measuring the deformation of the probe by the laser displacement sensor while monitoring the tool position. Meanwhile, the mechanical structure of the probe could affect the performance of measurement of the edge profile of a precision cutting tool. In this paper, the measurement principle of the tool edge profile is firstly introduced; after that, slopes and a top-flat of a cutting tool sample are measured by using a cantilever-type probe and a double-sided beam-type probe, respectively. The measurement performances of the two probes are compared through experiments and theoretical measurement uncertainty analysis.

2014 ◽  
Vol 8 (1) ◽  
pp. 28-33 ◽  
Author(s):  
So Ito ◽  
◽  
Sho Sekine ◽  
Yuki Shimizu ◽  
Wei Gao ◽  
...  

This paper introduces the widthmeasurement of a cutting tool edge by utilizing a laser triangulation displacement sensor. By using the reflected light intensity of the laser displacement sensor, micrometric edge width which is smaller than the diameter of the laser beam spot can be measured. With regard to the quantitative evaluation of the laser spot diameter, a calibration method of the laser spot diameter is achieved by using the pin-gauges. The diameter of the laser spot is obtained by using the pin-gauges, and the relationship between the reflected light intensity and the diameter of the pin-gauges are investigated. The width of the cutting tool edge is measured by the calibrated laser spot diameter, and then the reproducibility is evaluated.


2011 ◽  
Vol 101-102 ◽  
pp. 938-941
Author(s):  
Xin Li Tian ◽  
Hao Wang ◽  
Xiu Jian Tang ◽  
Zhao Li ◽  
Ai Bing Yu

Regrinding of wasted cutting tools can recycle resources and decrease manufacturing costs. Influence of relative tool sharpness and tool cutting edge angle on tool edge radius were analyzed. Cutting force and cutting temperature were simulated with FEM on different edge radius. Edge preparation experiments were carried out though an abrasive nylon brushing method. The results show that RTS and cutting edge angle have influence on edge radius. Small edge radius might result in small cutting forces and lower average temperatures, could maintain the cutting state between tool and workpiece. The cutting edge defects can be eliminated through edge preparation, and a smooth cutting edge can be obtained. Cutting tool life will be improved through proper edge design and edge preparation.


2015 ◽  
Vol 32 ◽  
pp. 03003
Author(s):  
Kenji Maruno ◽  
Masaki Michihata ◽  
Yasuhiro Mizutani ◽  
Yasuhiro Takaya

2017 ◽  
Vol 11 (6) ◽  
pp. 859-859
Author(s):  

he eighth Best Paper Award 2017 ceremony was held at Kanda Office of Fuji Technology Press Ltd., Tokyo, September 29, 2017, attended by the winners and IJAT Editorial Committee members. The Best Paper was severely selected from among 108 papers published in Vol.10, 2016. The Best Paper Award winner was given a certificate with a nearly US$1,000 honorarium. We congratulate the winner and sincerely wish for their future success. The Best Paper Award 2017 Fundamental Study on Novel On-Machine Measurement Method of a Cutting Tool Edge Profile with a Fluorescent Confocal Microscopy by Kenji Maruno, Masaki Michihata, Yasuhiro Mizutani, and Yasuhiro Takaya Int. J. of Automation Technology Vol.10 No.1, pp. 106-113, January, 2016


2018 ◽  
Vol 2018.12 (0) ◽  
pp. B18
Author(s):  
Kohei Matsumoto ◽  
Yasuhiro Mizutani ◽  
Yasuhiro Takaya
Keyword(s):  

2012 ◽  
Vol 6 (6) ◽  
pp. 815-828 ◽  
Author(s):  
Shinichi OSAWA ◽  
So ITO ◽  
Yuki SHIMIZU ◽  
SungHo JANG ◽  
Wei GAO ◽  
...  

Author(s):  
Eric B. Halfmann ◽  
C. Steve Suh ◽  
N. P. Hung

The workpiece and tool vibrations in a lathe are experimentally studied to establish improved understanding of cutting dynamics that would support efforts in exceeding the current limits of the turning process. A Keyence laser displacement sensor is employed to monitor the workpiece and tool vibrations during chatter-free and chatter cutting. A procedure is developed that utilizes instantaneous frequency (IF) to identify the modes related to measurement noise and those innate of the cutting process. Instantaneous frequency is shown to thoroughly characterize the underlying turning dynamics and identify the exact moment in time when chatter fully developed. That IF provides the needed resolution for identifying the onset of chatter suggests that the stability of the process should be monitored in the time-frequency domain to effectively detect and characterize machining instability. It is determined that for the cutting tests performed chatters of the workpiece and tool are associated with the changing of the spectral components and more specifically period-doubling bifurcation. The analysis presented provides a view of the underlying dynamics of the lathe process which has not been experimentally observed before.


2012 ◽  
Vol 184-185 ◽  
pp. 701-706
Author(s):  
Ming Xing Qiu ◽  
Chuang Shao ◽  
Yong Zhou ◽  
Li Hua Yue

In order to determine the fatigue limits of two kinds of titanium alloy pipes connected by welding and rolling, fatigue tests were carried out by the Aero-Criterion which gives vibration fatigue test method and failure criteria. A laser-displacement-sensor was used at the free end and a strain-gauge at the root of the pipe specimen. The test result shows that the fatigue limit of the welded pipe is higher than the rolled one. In the end some new findings are listed according to the test.


2013 ◽  
Vol 677 ◽  
pp. 384-387 ◽  
Author(s):  
Wai Kei Ricky Kot ◽  
Luen Chow Chan

In this paper, a visualisation system will be discussed that can be used to capture the deformation profile of the sheet blank during sheet metal forming processes, such as deep drawing and shape forming. The visualisation system utilizes a 2D laser displacement sensor for deformation profile acquisition. The sensor is embedded in the die and the laser propagates through the die to detect the profile change of the specimen concealed in the die during operation. The captured profile data will be collected, manipulated and transferred to a monitor for display via a controller. This visualisation of the deformation profile will provide engineers and researchers with an intuitive means of analysing and diagnosing the deformation process during sheet metal forming.


1999 ◽  
Author(s):  
Masatake Shiraishi ◽  
Gongjun Yang

Abstract A laser displacement sensor which has a resolution of 0.5 μm was used to determine the measurement of a curved workpiece profile in turning. This sensor is attached to a specially designed stage and is operated by three motors which are controlled by a fuzzy control algorithm. The experimental results show that the measuring system can be applied to workpieces having inclination angles of up to around 45°. The proposed measuring system has a practical measuring accuracy to within ten micrometers.


Sign in / Sign up

Export Citation Format

Share Document