scholarly journals Chaos Control in Three Dimensional Cancer Model by State Space Exact Linearization Based on Lie Algebra

Mathematics ◽  
2016 ◽  
Vol 4 (2) ◽  
pp. 33 ◽  
Author(s):  
Mohammad Shahzad
Cureus ◽  
2017 ◽  
Author(s):  
Michael Bartellas ◽  
Stephen Ryan ◽  
Gregory Doucet ◽  
Deanna Murphy ◽  
Jacqueline Turner

2021 ◽  
Vol 21 (5) ◽  
Author(s):  
Agata Golabek ◽  
Mariusz Kaczmarek ◽  
Ewelina Dondajewska ◽  
Kosma Sakrajda ◽  
Andrzej Mackiewicz ◽  
...  

2019 ◽  
Vol 4 (1) ◽  
pp. 149-155
Author(s):  
Kholmatzhon Imomnazarov ◽  
Ravshanbek Yusupov ◽  
Ilham Iskandarov

This paper studies a class of partial differential equations of second order , with arbitrary functions and , with the help of the group classification. The main Lie algebra of infinitely infinitesimal symmetries is three-dimensional. We use the method of preliminary group classification for obtaining the classifications of these equations for a one-dimensional extension of the main Lie algebra.


Author(s):  
Joy V. Hughes

The techniques known as Cellular Automata (CA) can be used to create a variety of visual effects. As the state space for each cell, 24-bit photo realistic color was used. Several new state transition rules were created to produce unusual and beautiful results, which can be used in an interactive program or for special effects for images or videos. This chapter presents a technique for applying CA rules to an image at several different levels of resolution and recombining the results. A “soft” artistic look can result. The concept of “targeted” CAs is introduced. A targeted CA changes the value of a cell only if it approaches a desired value using some distance metric. This technique is used to transform one image into another, to transform an image to a distorted version of itself, and to generate fractals. The author believes that the techniques presented can form the basis for a new artistic medium that is partially directed by the artist and partially emergent. Images and animations from this work are posted on the World Wide Web at (http://www.scruznet.com/~hughes/CA.html). All cellular automata (CA) operate on a space of discrete states. The simplest CAs, such as the Game of Life, use a 1-bit state space. Most modern personal computers represent color as a 24-bit value, allowing for approximately 16 million possible colors. The work presented in this chapter uses a 24-bit color space that is represented in a 32-bit-long integer. This color space can be conceptualized as a three-dimensional bounded continuous vector space. Often, it is desirable to work with in the HSV (Hue, Saturation, Value) color space. Some of the rules encode the value (luminance) of a cell in the otherwise unused 8 high-order bits of a 32-bit word. The hue and saturation can be estimated “on the fly” with simple, fast algorithms. The hue is represented as an angle on the color wheel. For some rules, it is necessary to know the “distance” between two colors. Estimating the distance in perceptual space would be a difficult problem, as it would be dependent on the monitor used and the gamma exponent applied for a particular setup.


2019 ◽  
Vol 22 (11) ◽  
pp. 2375-2391
Author(s):  
Asad S Albostami ◽  
Zhangjian Wu ◽  
Lee S Cunningham

In this article, cross-laminated timber panels are investigated as a novel engineering application of the state-space approach. As cross-laminated timber is a laminated composite panel, the three-dimensional analytical method provided by the state-space approach offers the potential for improved accuracy over existing common approaches to the analysis of cross-laminated timber. Before focusing on the specific application to cross-laminated timber, the general theory of the state-space approach is outlined. The method is then applied to describe the behaviour of a number of cross-laminated timber panel configurations previously examined experimentally and analytically. In order to demonstrate the capability of the state-space approach in this application, the results are compared with those from various two-dimensional and three-dimensional analytical approaches and finite element modelling briefly. With a view to design, different failure criteria are explored to assess the ultimate strength of the cross-laminated timber panels. The state-space approach demonstrates its superior capability in capturing the nonlinear distribution of the elastic stresses through the thickness of the cross-laminated timber panels over a range of span-to-thickness ratios common in practical applications.


2018 ◽  
Vol 234 (1) ◽  
pp. 181-191 ◽  
Author(s):  
Francesca Sensi ◽  
Edoardo D’Angelo ◽  
Sara D’Aronco ◽  
Roberto Molinaro ◽  
Marco Agostini

Sign in / Sign up

Export Citation Format

Share Document