scholarly journals Global Stability of Fractional Order Coupled Systems with Impulses via a Graphic Approach

Mathematics ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 744 ◽  
Author(s):  
Bei Zhang ◽  
Yonghui Xia ◽  
Lijuan Zhu ◽  
Haidong Liu ◽  
Longfei Gu

Based on the graph theory and stability theory of dynamical system, this paper studies the stability of the trivial solution of a coupled fractional-order system. Some sufficient conditions are obtained to guarantee the global stability of the trivial solution. Finally, a comparison between fractional-order system and integer-order system ends the paper.

2020 ◽  
Vol 23 (1) ◽  
pp. 183-210 ◽  
Author(s):  
Shuo Zhang ◽  
Lu Liu ◽  
Dingyu Xue ◽  
YangQuan Chen

AbstractThe elementary fractional-order models are the extension of first and second order models which have been widely used in various engineering fields. Some important properties of commensurate or a few particular kinds of non-commensurate elementary fractional-order transfer functions have already been discussed in the existing studies. However, most of them are only available for one particular kind elementary fractional-order system. In this paper, the stability and resonance analysis of a general kind non-commensurate elementary fractional-order system is presented. The commensurate-order restriction is fully released. Firstly, based on Nyquist’s Theorem, the stability conditions are explored in details under different conditions, namely different combinations of pseudo-damping (ζ) factor values and order parameters. Then, resonance conditions are established in terms of frequency behaviors. At last, an example is given to show the stable and resonant regions of the studied systems.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Li-xin Yang ◽  
Xiao-jun Liu

This paper proposes a new fractional-order chaotic system with five terms. Firstly, basic dynamical properties of the fractional-order system are investigated in terms of the stability of equilibrium points, Jacobian matrices theoretically. Furthermore, rich dynamics with interesting characteristics are demonstrated by phase portraits, bifurcation diagrams numerically. Besides, the control problem of the new fractional-order system is discussed via numerical simulations. Our results demonstrate that the new fractional-order system has compound structure.


2022 ◽  
Vol 27 (1) ◽  
pp. 102-120
Author(s):  
Jin You ◽  
Shurong Sun

This paper investigates practical stability for a class of fractional-order impulsive control coupled systems with noninstantaneous impulses on networks. Using graph theory and Lyapunov method, new criteria for practical stability, uniform practical stability as well as practical asymptotic stability are established. In this paper, we extend graph theory to fractional-order system via piecewise Lyapunov-like functions in each vertex system to construct global Lyapunov-like functions. Our results are generalization of some known results of practical stability in the literature and provide a new method of impulsive control law for impulsive control systems with noninstantaneous impulses. Examples are given to illustrate the effectiveness of our results


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Xiaojun Liu ◽  
Ling Hong ◽  
Lixin Yang ◽  
Dafeng Tang

In this paper, a new fractional-order system which has a chaotic attractor of the one-scroll structure is presented. Firstly, the stability of the equilibrium points of the system is investigated. And based on the stability analysis, the generation conditions of the one-scroll structure for the attractor are determined. In a commensurate-order case, bifurcations with the variation of a system parameter are investigated as derivative orders decrease from 0.99. In an incommensurate-order case, bifurcations with the variation of a derivative order are analyzed as other orders decrease from 1.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Jianyu Lin

The paper concerns the problem of stabilization of large-scale fractional order uncertain systems with a commensurate order1<α<2under controller gain uncertainties. The uncertainties are of norm-bounded type. Based on the stability criterion of fractional order system, sufficient conditions on the decentralized stabilization of fractional order large-scale uncertain systems in both cases of additive and multiplicative gain perturbations are established by using the complex Lyapunov inequality. Moreover, the decentralized nonfragile controllers are designed. Finally, some numerical examples are given to validate the proposed method.


Author(s):  
M. Busłowicz

Abstract The stability problem of continuous-time linear fractional order systems with state delay is considered. New simple necessary and sufficient conditions for the asymptotic stability are established. The conditions are given in terms of eigenvalues of the state matrix and time delay. It is shown that in the complex plane there exists such a region that location in this region of all eigenvalues of the state matrix multiplied by delay in power equal to the fractional order is necessary and sufficient for the asymptotic stability. Parametric description of boundary of this region is derived and simple new analytic necessary and sufficient conditions for the stability are given. Moreover, it is shown that the stability of the fractional order system without delay is necessary for the stability of this system with delay. The considerations are illustrated by a numerical example.


2013 ◽  
Vol 850-851 ◽  
pp. 796-799
Author(s):  
Xiao Ya Yang

In this paper, synchronization of a fractional-order system with unknown parameters is studied. The chaotic attractor of the system is got by means of numerical simulation. Then based on the stability theory of fractional-order systems, suitable synchronization controllers and parameter identification rules for the unknown parameters are designed. Numerical simulations are used to demonstrate the effectiveness of the controllers.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Xiaoya Yang ◽  
Xiaojun Liu ◽  
Honggang Dang ◽  
Wansheng He

A fractional-order system with complex variables is proposed. Firstly, the dynamics of the system including symmetry, equilibrium points, chaotic attractors, and bifurcations with variation of system parameters and derivative order are studied. The routes leading to chaos including the period-doubling and tangent bifurcations are obtained. Then, based on the stability theory of fractional-order systems, the scheme of synchronization for the fractional-order complex system is presented. By designing appropriate controllers, the synchronization for the system is realized. Numerical simulations are carried out to demonstrate the effectiveness of the proposed scheme.


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040012 ◽  
Author(s):  
ZEESHAN ALI ◽  
KAMAL SHAH ◽  
AKBAR ZADA ◽  
POOM KUMAM

In this paper, we prove the existence, uniqueness and various kinds of Ulam stability for fractional order coupled systems with fractional order boundary conditions involving Riemann–Liouville fractional derivatives. The standard fixed point theorem like Leray–Schauder alternative and Banach contraction are applied to establish the existence theory and uniqueness. Furthermore, we build sufficient conditions for the stability mentioned above by two methods. Also, an example is given to illustrate our theoretical results. The proposed problem is the generalization of third-order ordinary differential equations with classical, initial and anti-periodic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document