scholarly journals A Decentralized Framework for Parameter and State Estimation of Infiltration Processes

Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 681
Author(s):  
Song Bo ◽  
Jinfeng Liu

The Richards’ equation is widely used in the modeling soil water dynamics driven by the capillary and gravitational forces in the vadose zone. Its state and parameter estimation based on field soil moisture measurements is important and challenging for field applications of the Richards’ equation. In this work, we consider simultaneous state and parameter estimation of systems described by the three dimensional Richards’ equation with multiple types of soil. Based on a study on the interaction between subsystems, we propose to use decentralized estimation schemes to reduce the complexity of the estimation problem. Guidelines for subsystem decomposition are discussed and a decentralized estimation scheme developed in the framework of moving horizon state estimation is proposed. Extensive simulation results are presented to show the performance of the proposed decentralized approach.

Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 286 ◽  
Author(s):  
Robert Pinzinger ◽  
René Blankenburg

The Richards’-equation is widely used for modeling complex soil water dynamics in the vadose zone. Usually, the Richards’-equation is simulated with the Finite Element Method, the Finite Difference Method, or the Finite Volume Method. In all three cases, huge systems of equations are to be solved, which is computationally expensive. By employing the free software library AMGCL, a reduction of the computational running time of up to 79% was achieved without losing accuracy. Seven models with different soils and geometries were tested, and the analysis of these tests showed, that AMGCL causes a speedup in all models with 20,000 or more nodes. However, the numerical overhead of AMGCL causes a slowdown in all models with 20,000 or fewer nodes.


1989 ◽  
Vol 111 (3) ◽  
pp. 505-510 ◽  
Author(s):  
G. E. Young ◽  
J. J. Shelton ◽  
C. Kardamilas

Web processing systems rely on accurate lateral positioning to achieve high processing speeds and improved product quality. Due to physical constraints in some processing lines placement of the edge sensor near the web guide is not possible. As a result, large lateral oscillation and/or web instability have been observed. A new model is developed for lateral web dynamics. Experimental verification has justified the structure of the model. A parameter estimation scheme is used to tune the model for imperfections not originally incorporated. State estimation is then used to predict lateral web position on a downstream sensor. Desirable control is achieved and is further improved with the use of the feedforward sensor. Predicted and experimental results are compared.


2008 ◽  
Vol 58 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Yijian Zeng ◽  
Li Wan ◽  
Zhongbo Su ◽  
Hirotaka Saito ◽  
Kangle Huang ◽  
...  

2016 ◽  
Author(s):  
E. Zehe ◽  
C. Jackisch

Abstract. Within this study we propose a stochastic approach to simulate soil water dynamics in the unsaturated zone by using a non-linear, space domain random walk of water particles. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. A naive random walk, which assumes all water particles to move at the same drift velocity and diffusivity, overestimated depletion of soil moisture gradients compared to a Richards' solver. This is because soil water and hence the corresponding water particles in smaller pore size fractions, are, due to the non-linear decrease of soil hydraulic conductivity with decreasing soil moisture, much less mobile. After accounting for this subscale variability of particle mobility, the particle model and a Richards' solver performed similarly during simulated wetting and drying circles in three distinctly different soils. The particle model typically produced slightly smaller top soil water contents during wetting and was faster in depleting soil moisture gradients during subsequent drainage phases. Within a real world benchmark the particle model matched observed soil moisture response to a moderated rainfall event even slightly better than the Richards' solver. The proposed approach is hence a promising, easy to implement alternative to the Richards equation. This is particularly also because it allows one to step beyond the assumption of local equilibrium during rainfall driven conditions. This is demonstrated by treating infiltrating event water particles as different type of particle which travel initially, mainly gravity driven, in the largest pore fraction at maximum velocity, and yet experience a slow diffusive mixing with the pre-event water particles within a characteristic mixing time.


2016 ◽  
Vol 20 (9) ◽  
pp. 3511-3526 ◽  
Author(s):  
Erwin Zehe ◽  
Conrad Jackisch

Abstract. Within this study we propose a stochastic approach to simulate soil water dynamics in the unsaturated zone by using a non-linear, space domain random walk of water particles. Soil water is represented by particles of constant mass, which travel according to the Itô form of the Fokker–Planck equation. The model concept builds on established soil physics by estimating the drift velocity and the diffusion term based on the soil water characteristics. A naive random walk, which assumes all water particles to move at the same drift velocity and diffusivity, overestimated depletion of soil moisture gradients compared to a Richards solver. This is because soil water and hence the corresponding water particles in smaller pore size fractions are, due to the non-linear decrease in soil hydraulic conductivity with decreasing soil moisture, much less mobile. After accounting for this subscale variability in particle mobility, the particle model and a Richards solver performed highly similarly during simulated wetting and drying circles in three distinctly different soils. Both models were in very good accordance during rainfall-driven conditions, regardless of the intensity and type of the rainfall forcing and the shape of the initial state. Within subsequent drying cycles the particle model was typically slightly slower in depleting soil moisture gradients than the Richards model. Within a real-world benchmark, the particle model and the Richards solver showed the same deficiencies in matching observed reactions of topsoil moisture to a natural rainfall event. The particle model performance, however, clearly improved after a straightforward implementation of rapid non-equilibrium infiltration, which treats event water as different types of particles, which travel initially in the largest pore fraction at maximum velocity and experience a slow diffusive mixing with the pre-event water particles. The proposed Lagrangian approach is hence a promising, easy-to-implement alternative to the Richards equation for simulating rainfall-driven soil moisture dynamics, which offers straightforward opportunities to account for preferential, non-equilibrium flow.


Sign in / Sign up

Export Citation Format

Share Document