scholarly journals Maximizing the Minimal Satisfaction—Characterizations of Two Proportional Values

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1129
Author(s):  
Wenzhong Li ◽  
Genjiu Xu ◽  
Hao Sun

A class of solutions are introduced by lexicographically minimizing the complaint of coalitions for cooperative games with transferable utility. Among them, the nucleolus is an important representative. From the perspective of measuring the satisfaction of coalitions with respect to a payoff vector, we define a family of optimal satisfaction values in this paper. The proportional division value and the proportional allocation of non-separable contribution value are then obtained by lexicographically maximizing two types of satisfaction criteria, respectively, which are defined by the lower bound and the upper bound of the core from the viewpoint of optimism and pessimism respectively. Correspondingly, we characterize these two proportional values by introducing the equal minimal satisfaction property and the associated consistency property. Furthermore, we analyze the duality of these axioms and propose more approaches to characterize these two values on basis of the dual axioms.

Author(s):  
Bas Dietzenbacher ◽  
Peter Sudhölter

AbstractThis paper formally introduces Hart–Mas-Colell consistency for general (possibly multi-valued) solutions for cooperative games with transferable utility. This notion is used to axiomatically characterize the core on the domain of convex games. Moreover, we characterize all nonempty solutions satisfying individual rationality, anonymity, scale covariance, superadditivity, weak Hart–Mas-Colell consistency, and converse Hart–Mas-Colell consistency. This family consists of (a) the Shapley value, (b) all homothetic images of the core with the Shapley value as center of homothety and with positive ratios of homothety not larger than one, and (c) their relative interiors.


2019 ◽  
Vol 20 (2) ◽  
pp. 243-256 ◽  
Author(s):  
Heinrich H. Nax

Abstract Dynamics for play of transferable-utility cooperative games are proposed that require information regarding own payoff experiences and other players’ past actions, but not regarding other players’ payoffs. The proposed dynamics provide an evolutionary interpretation of the proto-dynamic ‘blocking argument’ (Edgeworth, 1881) based on the behavioral principles of ‘aspiration adaptation’ (Sauermann and Selten, 1962) instead of best response. If the game has a non-empty core, the dynamics are absorbed into the core in finite time with probability one. If the core is empty, the dynamics cycle infinitely through all coalitions.


2002 ◽  
Vol 04 (02) ◽  
pp. 165-172 ◽  
Author(s):  
ANINDYA BHATTACHARYA ◽  
AMIT K. BISWAS

The core and the stable set are possibly the two most crucially important solution concepts for cooperative games. The relation between the two has been investigated in the context of symmetric transferable utility games and this has been related to the notion of large core. In this paper the relation between the von-Neumann–Morgenstern stability of the core and the largeness of it is investigated in the case of non-transferable utility (NTU) games. The main findings are that under certain regularity conditions, if the core of an NTU game is large then it is a stable set and for symmetric NTU games the core is a stable set if and only if it is large.


2016 ◽  
Vol 18 (01) ◽  
pp. 1650003 ◽  
Author(s):  
Sylvain Béal ◽  
Eric Rémila ◽  
Philippe Solal

This paper studies values for cooperative games with transferable utility. Numerous such values can be characterized by axioms of [Formula: see text]-associated consistency, which require that a value is invariant under some parametrized linear transformation [Formula: see text] on the vector space of cooperative games with transferable utility. Xu et al. [(2008) Linear Algebr. Appl. 428, 1571–1586; (2009) Linear Algebr. Appl. 430, 2896–2897] Xu et al. [(2013) Linear Algebr. Appl. 439, 2205–2215], Hamiache [(2010) Int. Game Theor. Rev. 12, 175–187] and more recently Xu et al. [(2015) Linear Algebr. Appl. 471, 224–240] follow this approach by using a matrix analysis. The main drawback of these articles is the heaviness of the proofs to show that the matrix expression of the linear transformations is diagonalizable. By contrast, we provide quick proofs by relying on the Jordan normal form of the previous matrix.


1998 ◽  
Vol 58 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Shiqing Zhang

Using the equivariant Ljusternik-Schnirelmann theory and the estimate of the upper bound of the critical value and lower bound for the collision solutions, we obtain some new results in the large concerning multiple geometrically distinct periodic solutions of fixed energy for a class of planar N-body type problems.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


Author(s):  
E. S. Barnes

Letbe n linear forms with real coefficients and determinant Δ = ∥ aij∥ ≠ 0; and denote by M(X) the lower bound of | X1X2 … Xn| over all integer sets (u) ≠ (0). It is well known that γn, the upper bound of M(X)/|Δ| over all sets of forms Xi, is finite, and the value of γn has been determined when n = 2 and n = 3.


2010 ◽  
Vol 47 (03) ◽  
pp. 611-629
Author(s):  
Mark Fackrell ◽  
Qi-Ming He ◽  
Peter Taylor ◽  
Hanqin Zhang

This paper is concerned with properties of the algebraic degree of the Laplace-Stieltjes transform of phase-type (PH) distributions. The main problem of interest is: given a PH generator, how do we find the maximum and the minimum algebraic degrees of all irreducible PH representations with that PH generator? Based on the matrix exponential (ME) order of ME distributions and the spectral polynomial algorithm, a method for computing the algebraic degree of a PH distribution is developed. The maximum algebraic degree is identified explicitly. Using Perron-Frobenius theory of nonnegative matrices, a lower bound and an upper bound on the minimum algebraic degree are found, subject to some conditions. Explicit results are obtained for special cases.


Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.


Sign in / Sign up

Export Citation Format

Share Document