scholarly journals Differential effects of intervention timing on COVID-19 spread in the United States

2020 ◽  
Vol 6 (49) ◽  
pp. eabd6370 ◽  
Author(s):  
Sen Pei ◽  
Sasikiran Kandula ◽  
Jeffrey Shaman

Assessing the effects of early nonpharmaceutical interventions on coronavirus disease 2019 (COVID-19) spread is crucial for understanding and planning future control measures to combat the pandemic. We use observations of reported infections and deaths, human mobility data, and a metapopulation transmission model to quantify changes in disease transmission rates in U.S. counties from 15 March to 3 May 2020. We find that marked, asynchronous reductions of the basic reproductive number occurred throughout the United States in association with social distancing and other control measures. Counterfactual simulations indicate that, had these same measures been implemented 1 to 2 weeks earlier, substantial cases and deaths could have been averted and that delayed responses to future increased incidence will facilitate a stronger rebound of infections and death. Our findings underscore the importance of early intervention and aggressive control in combatting the COVID-19 pandemic.

Author(s):  
Sen Pei ◽  
Sasikiran Kandula ◽  
Jeffrey Shaman

Assessing the effects of early non-pharmaceutical interventions1-5 on COVID-19 spread in the United States is crucial for understanding and planning future control measures to combat the ongoing pandemic6-10. Here we use county-level observations of reported infections and deaths11, in conjunction with human mobility data12 and a metapopulation transmission model13,14, to quantify changes of disease transmission rates in US counties from March 15, 2020 to May 3, 2020. We find significant reductions of the basic reproductive numbers in major metropolitan areas in association with social distancing and other control measures. Counterfactual simulations indicate that, had these same control measures been implemented just 1-2 weeks earlier, a substantial number of cases and deaths could have been averted. Specifically, nationwide, 61.6% [95% CI: 54.6%-67.7%] of reported infections and 55.0% [95% CI: 46.1%-62.2%] of reported deaths as of May 3, 2020 could have been avoided if the same control measures had been implemented just one week earlier. We also examine the effects of delays in re-implementing social distancing following a relaxation of control measures. A longer response time results in a stronger rebound of infections and death. Our findings underscore the importance of early intervention and aggressive response in controlling the COVID-19 pandemic.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249271
Author(s):  
Karla Therese L. Sy ◽  
Laura F. White ◽  
Brooke E. Nichols

The basic reproductive number (R0) is a function of contact rates among individuals, transmission probability, and duration of infectiousness. We sought to determine the association between population density and R0 of SARS-CoV-2 across U.S. counties. We conducted a cross-sectional analysis using linear mixed models with random intercept and fixed slopes to assess the association of population density and R0, and controlled for state-level effects using random intercepts. We also assessed whether the association was differential across county-level main mode of transportation percentage as a proxy for transportation accessibility, and adjusted for median household income. The median R0 among the United States counties was 1.66 (IQR: 1.35–2.11). A population density threshold of 22 people/km2 was needed to sustain an outbreak. Counties with greater population density have greater rates of transmission of SARS-CoV-2, likely due to increased contact rates in areas with greater density. An increase in one unit of log population density increased R0 by 0.16 (95% CI: 0.13 to 0.19). This association remained when adjusted for main mode of transportation and household income. The effect of population density on R0 was not modified by transportation mode. Our findings suggest that dense areas increase contact rates necessary for disease transmission. SARS-CoV-2 R0 estimates need to consider this geographic variability for proper planning and resource allocation, particularly as epidemics newly emerge and old outbreaks resurge.


Author(s):  
Ruian Ke ◽  
Ethan Obie Romero-Severson ◽  
Steven Sanche ◽  
Nick Hengartner

SARS-CoV-2 rapidly spread from a regional outbreak to a global pandemic in just a few months. Global research efforts have focused on developing effective vaccines against SARS-CoV-2 and the disease it causes, COVID-19. However, some of the basic epidemiological parameters, such as the exponential epidemic growth rate and the basic reproductive number, R0, across geographic areas are still not well quantified. Here, we developed and fit a mathematical model to case and death count data collected from the United States and eight European countries during the early epidemic period before broad control measures were implemented. Results show that the early epidemic grew exponentially at rates between 0.19-0.29/day (epidemic doubling times between 2.4-3.6 days). We discuss the current estimates of the mean serial interval, and argue that existing evidence suggests that the interval is between 6-8 days in the absence of active isolation efforts. Using parameters consistent with this range, we estimated the median R0 value to be 5.8 (confidence interval: 4.7-7.3) in the United States and between 3.6 and 6.1 in the eight European countries. This translates to herd immunity thresholds needed to stop transmission to be between 73% and 84%. We further analyze how vaccination schedules depends on R0, the duration of vaccine-induced immunity to SARS-CoV-2, and show that individual-level heterogeneity in vaccine induced immunity can significantly affect vaccination schedules.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bingyi Yang ◽  
Angkana T. Huang ◽  
Bernardo Garcia-Carreras ◽  
William E. Hart ◽  
Andrea Staid ◽  
...  

AbstractNon-pharmaceutical interventions (NPIs) remain the only widely available tool for controlling the ongoing SARS-CoV-2 pandemic. We estimated weekly values of the effective basic reproductive number (Reff) using a mechanistic metapopulation model and associated these with county-level characteristics and NPIs in the United States (US). Interventions that included school and leisure activities closure and nursing home visiting bans were all associated with a median Reff below 1 when combined with either stay at home orders (median Reff 0.97, 95% confidence interval (CI) 0.58–1.39) or face masks (median Reff 0.97, 95% CI 0.58–1.39). While direct causal effects of interventions remain unclear, our results suggest that relaxation of some NPIs will need to be counterbalanced by continuation and/or implementation of others.


Science ◽  
2021 ◽  
Vol 372 (6538) ◽  
pp. eabg3055 ◽  
Author(s):  
Nicholas G. Davies ◽  
Sam Abbott ◽  
Rosanna C. Barnard ◽  
Christopher I. Jarvis ◽  
Adam J. Kucharski ◽  
...  

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.


Author(s):  
A. George Maria Selvam ◽  
Jehad Alzabut ◽  
D. Abraham Vianny ◽  
Mary Jacintha ◽  
Fatma Bozkurt Yousef

Towards the end of 2019, the world witnessed the outbreak of Severe Acute Respiratory Syndrome Coronavirus-2 (COVID-19), a new strain of coronavirus that was unidentified in humans previously. In this paper, a new fractional-order Susceptible–Exposed–Infected–Hospitalized–Recovered (SEIHR) model is formulated for COVID-19, where the population is infected due to human transmission. The fractional-order discrete version of the model is obtained by the process of discretization and the basic reproductive number is calculated with the next-generation matrix approach. All equilibrium points related to the disease transmission model are then computed. Further, sufficient conditions to investigate all possible equilibria of the model are established in terms of the basic reproduction number (local stability) and are supported with time series, phase portraits and bifurcation diagrams. Finally, numerical simulations are provided to demonstrate the theoretical findings.


2001 ◽  
Vol 356 (1411) ◽  
pp. 1001-1012 ◽  
Author(s):  
A. Dobson ◽  
J. Foufopoulos

The first part of this paper surveys emerging pathogens of wildlife recorded on the ProMED Web site for a 2–year period between 1998 and 2000. The majority of pathogens recorded as causing disease outbreaks in wildlife were viral in origin. Anthropogenic activities caused the outbreaks in a significant majority of cases. The second part of the paper develops some matrix models for quantifying the basic reproductive number, R 0 , for a variety of potential types of emergent pathogen that cause outbreaks in wildlife. These analyses emphasize the sensitivity of R 0 to heterogeneities created by either the spatial structure of the host population, or the ability of the pathogens to utilize multiple host species. At each stage we illustrate how the approach provides insight into the initial dynamics of emergent pathogens such as canine parvovirus, Lyme disease, and West Nile virus in the United States.


2020 ◽  
Author(s):  
Romain Garnier ◽  
Jan R Benetka ◽  
John Kraemer ◽  
Shweta Bansal

BACKGROUND Eliminating disparities in the burden of COVID-19 requires equitable access to control measures across socio-economic groups. Limited research on socio-economic differences in mobility hampers our ability to understand whether inequalities in social distancing are occurring during the SARS-CoV-2 pandemic. OBJECTIVE We aimed to assess how mobility patterns have varied across the United States during the COVID-19 pandemic and to identify associations with socioeconomic factors of populations. METHODS We used anonymized mobility data from tens of millions of devices to measure the speed and depth of social distancing at the county level in the United States between February and May 2020, the period during which social distancing was widespread in this country. Using linear mixed models, we assessed the associations between social distancing and socioeconomic variables, including the proportion of people in the population below the poverty level, the proportion of Black people, the proportion of essential workers, and the population density. RESULTS We found that the speed, depth, and duration of social distancing in the United States are heterogeneous. We particularly show that social distancing is slower and less intense in counties with higher proportions of people below the poverty level and essential workers; in contrast, we show that social distancing is intensely adopted in counties with higher population densities and larger Black populations. CONCLUSIONS Socioeconomic inequalities appear to be associated with the levels of adoption of social distancing, potentially resulting in wide-ranging differences in the impact of the COVID-19 pandemic in communities across the United States. These inequalities are likely to amplify existing health disparities and must be addressed to ensure the success of ongoing pandemic mitigation efforts.


2021 ◽  
Vol 7 (10) ◽  
pp. eabd6989
Author(s):  
Nicole E. Kogan ◽  
Leonardo Clemente ◽  
Parker Liautaud ◽  
Justin Kaashoek ◽  
Nicholas B. Link ◽  
...  

Given still-high levels of coronavirus disease 2019 (COVID-19) susceptibility and inconsistent transmission-containing strategies, outbreaks have continued to emerge across the United States. Until effective vaccines are widely deployed, curbing COVID-19 will require carefully timed nonpharmaceutical interventions (NPIs). A COVID-19 early warning system is vital for this. Here, we evaluate digital data streams as early indicators of state-level COVID-19 activity from 1 March to 30 September 2020. We observe that increases in digital data stream activity anticipate increases in confirmed cases and deaths by 2 to 3 weeks. Confirmed cases and deaths also decrease 2 to 4 weeks after NPI implementation, as measured by anonymized, phone-derived human mobility data. We propose a means of harmonizing these data streams to identify future COVID-19 outbreaks. Our results suggest that combining disparate health and behavioral data may help identify disease activity changes weeks before observation using traditional epidemiological monitoring.


2021 ◽  
Author(s):  
Brian M. Gurbaxani ◽  
Andrew N. Hill ◽  
Prabasaj Paul ◽  
Pragati V. Prasad ◽  
Rachel B. Slayton

AbstractWe updated a published mathematical model of SARS-CoV-2 transmission with laboratory-derived source and wearer protection efficacy estimates for a variety of face masks to estimate their impact on COVID-19 incidence and related mortality in the United States. When used at already-observed population rates of 80% for those ≥65 years and 60% for those <65 years, face masks are associated with 69% (cloth) to 78% (medical procedure mask) reductions in cumulative COVID-19 infections and 82% (cloth) to 87% (medical procedure mask) reductions in related deaths over a 6-month timeline in the model. If cloth or medical procedure masks’ source control and wearer protection efficacies are boosted about 30% each to 84% and 60% by cloth over medical procedure masking, fitters, or braces, the COVID-19 basic reproductive number of 2.5 could decrease to an effective reproductive number ≤ 1.0, and from 4.0 to ≈ 1.6 for the B.1.1.7 variant.Article Summary LineAdapting a published SARS-CoV-2 transmission model together with updated, laboratory-derived source control and wearer protection efficacy estimates for a variety of face coverings as well as N95 respirators, we demonstrate that community masking as currently practiced has likely reduced cases and deaths and that this benefit can be increased with wider adoption of better performing masks.


Sign in / Sign up

Export Citation Format

Share Document