scholarly journals Determining the Thermal Conductivity of Clay during the Freezing Process by Artificial Neural Network

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xiuling Ren ◽  
Yanhui You ◽  
Qihao Yu ◽  
Guike Zhang ◽  
Pan Yue ◽  
...  

Thermal conductivity is an important thermal parameter in engineering design in cold regions. By measuring the thermal conductivity of clay using a transient hot-wire method in the laboratory, the influential factors of the thermal conductivity of soils during the freezing process were analyzed, and a predictive model of thermal conductivity was developed with an artificial neural network (ANN) technology. The results show that the variation of thermal conductivity can be divided into three stages with decreasing temperature, positive temperature stage, transition stage, and negative temperature stage. The thermal conductivity increases sharply in the transition stage. The difference between the thermal conductivity at positive and negative temperature is small when the dry density of the soil specimens is larger than the critical dry density, while the difference is large if the dry density is less than the critical dry density. As the negative temperature decreases, the larger the moisture content of the soil specimens, the larger the increase of thermal conductivity. The effect of initial moisture content on thermal conductivity is more significant than that of dry density and temperature. The change tendency of the thermal conductivity calculated by the established ANN model is basically consistent with that of the laboratory-measured values, indicating that this model can be able to accurately predict the thermal conductivity of the soil specimens in the freezing process.

2017 ◽  
Vol 64 (3) ◽  
pp. 169-180 ◽  
Author(s):  
Oluseun Adetola Sanuade ◽  
Rasheed Babatunde Adesina ◽  
Joel Olayide Amosun ◽  
Akindeji Opeyemi Fajana ◽  
Olayiwola Grace Olaseeni

Abstract Artificial neural network (ANN) was used to predict the dry density of soil from its thermal conductivity. The study area is a farmland located in Abeokuta, Ogun State, Southwestern Nigeria. Thirty points were sampled in a grid pattern, and the thermal conductivities were measured using KD-2 Pro thermal analyser. Samples were collected from 20 sample points to determine the dry density in the laboratory. MATLAB was used to perform the ANN analysis in order to predict the dry density of soil. The ANN was able to predict dry density with a root-mean-square error (RMSE) of 0.50 and a correlation coefficient (R2) of 0.80. The validation of our model between the actual and predicted dry densities shows R2 to be 0.99. This fit shows that the model can be applied to predict the dry density of soil in study areas where the thermal conductivities are known.


2019 ◽  
Vol 964 ◽  
pp. 270-279
Author(s):  
Zulkifli ◽  
Gede Panji

Indonesia with abundant limestone raw materials, lightweight brick is the most important component in building construction, so it needs a light brick product that qualifies in thermal, mechanical and acoustic properties. In this paper raised the lightweight brick domains that qualify on the properties of thermal conductivity as building wall components.The advantage of low light density brick (500-650 kg/m3), more economical, suitable for high rise building can reduce the weight of 30-40% in compared to conventional brick (clay brick). To obtain AAC type lightweight brick product that qualifies for low thermal and density properties to the effect of Aluminum (Al) additive element variation using artificial neural network (ANN). The composition of the main elements of lightweight brick O (29-45 % wt), Si (25-35% wt) and Ca (20-40 % wt). Mixing ratio of the main element of light brick (Ca, O and Si) with Aluminum additive element (Al), is done by simulation method of artificial neural network (ANN), Al additive element as a porosity regulator is formed. The simulation of thermal conductivity to the influence of main element variation: Ca (22-32 % wt), Si (12-33 % wt). Simulation of thermal conductivity to effect of additive Al variation (1-7 % wt). Simulation of thermal conductivity to density variation (500-1200 kg/m3). The simulated results of four AAC brick samples showed the thermal conductivity (0.145-0.192 W/m.K) to the influence of qualified Aluminum additives (2.10-6.75 % wt). Additive Al the higher the lower density value (higher porosity) additive Al smaller than 2.10 % wt does not meet the requirements in the simulation.Thermal conductivity of AAC light brick sample (0.184 W/m.K) the influence of the main elements that qualify Ca (20.32-30.35 % wt) and Si (26.57 % wt). Simulation of artificial neural network (ANN) of light brick shows that maximum allowable Si content of 26.57 % wt, Ca content is in the range 20.32-30.35 % wt, and the minimum content of aluminum in brick is light at 2.10 % wt. ANN tests performed to predict the thermal conductivity of light brick samples obtained results of the average AAC light brick thermal conductivity of 0.151 W/m.K. The best performance with Artificial Neural Network (ANN) characteristics has a validation MSE of 0.002252.


Sign in / Sign up

Export Citation Format

Share Document