scholarly journals Relating Hydraulic Conductivity Curve to Soil-Water Retention Curve Using a Fractal Model

Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2201
Author(s):  
Carlos Fuentes ◽  
Carlos Chávez ◽  
Fernando Brambila

In the study of water transference in soil according to Darcy law, the knowledge of hydrodynamic characteristics, formed by the water retention curve θ(ψ), and the hydraulic conductivity curve K(ψ) are of great importance. The first one relates the water volumetric content (θ) with the water-soil pressure (ψ); the second one, the hydraulic conductivity (K) with the water-soil pressure. The objective of this work is to establish relationships between both curves using concepts of probability theory and fractal geometry in order to reduce the number of unknown functions. The introduction of four definitions used at the literature of the pore effective radius that is involve in the general model has permitted to establish four new specials models to predict the relative hydraulic conductivity. Some additional considerations related to the definitions of flow effective area and the tortuosity factor have allow us to deduce four classical models that are extensively used in different studies. In particular, we have given some interpretations of its empirical parameters in the fractal geometry context. The resulting functions for hydrodynamic characteristics can be utilized in many studies of water movement in the soil.

2021 ◽  
Author(s):  
Andre Peters ◽  
Tobias L. Hohenbrink ◽  
Sascha C. Iden ◽  
Wolfgang Durner

<p>The mathematical representation of the soil hydraulic properties is of central importance for modeling water, solute and energy transport in the vadose zone. The established models of the soil water retention and hydraulic conductivity curves account for capillary water retention and capillary conductivity, but neglect water adsorption and water flow in films and in pore corners. They are therefore suited for modeling flow and transport processes in the medium to wet moisture range, but are susceptible to failure in dry soil. The model system developed by Peters (2013, 2014) and Iden and Durner (2014) (PDI in the following) is a simple parametric framework that overcomes these structural shortcomings. However, it requires an additional parameter to scale the hydraulic conductivity curve in the medium to dry moisture range where non-capillary flow is dominant. Measured conductivity data are required to estimate this scaling parameter and to compute the hydraulic conductivity over the complete moisture range. In this contribution, we first analyze the original model formulation and show that it is in close agreement with a comprehensive physically-based model for film conductivity in porous media. We then suggest a physically based method to predict the film conductivity from the water retention curve. This reduces the number of free parameters by one and gives a complete prediction of the hydraulic conductivity curve if only water retention data and the saturated conductivity are known. Application to literature data covering a broad range of textures shows a very good agreement between measured data and predictions.</p>


HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1106-1112 ◽  
Author(s):  
Paraskevi A. Londra

For effective irrigation and fertilization management, the knowledge of substrate hydraulic properties is essential. In this study, a steady-state laboratory method was used to determine simultaneously the water retention curve, θ(h), and unsaturated hydraulic conductivity as a function of volumetric water content, K(θ), and water pressure head, K(h), of five substrates used widely in horticulture. The substrates examined were pure peat, 75/25 peat/perlite, 50/50 peat/perlite, 50/50 coir/perlite, and pure perlite. The experimental retention curve results showed that in the case of peat and its mixtures with perlite, there is a hysteresis between drying and wetting branches of the retention curve. Whereas in the case of coir/perlite and perlite, the phenomenon of hysteresis was less pronounced. The increase of perlite proportion in the peat/perlite mixtures led to a decrease of total porosity and water-holding capacity and an increase of air space. Study of the K(θ) and K(h) experimental data showed that the hysteresis phenomenon of K(θ) was negligible compared with the K(h) data for all substrates examined. Within a narrow range of water pressure head (0 to –70 cm H2O) that occurs between two successive irrigations, a sharp decrease of the unsaturated hydraulic conductivity was observed. The comparison of the K(θ) experimental data between the peat-based substrate mixtures and the coir-based substrate mixture showed that for water contents lower than 0.40 m3·m−3, the hydraulic conductivity of the 50/50 coir/perlite mixture was greater. The comparison between experimental water retention curves and predictions using Brooks-Corey and van Genuchten models showed a high correlation (0.992 ≤ R2 ≤ 1) for both models for all substrates examined. On the other hand, in the case of unsaturated hydraulic conductivity, the comparison showed a relatively good correlation (0.951 ≤ R2 ≤ 0.981) for the van Genuchten-Mualem model for all substrates used except perlite and a significant deviation (0.436 ≤ R2 ≤ 0.872) for the Brooks-Corey model for all substrates used.


2020 ◽  
Author(s):  
Boguslaw Usowicz ◽  
Jerzy Lipiec

<p>Soil organic carbon accumulation is central to the improvement of many soil properties and functions. Biochar use and management could be particularly beneficial for soils with low organic carbon content. It's known that many of soils in the world intrinsically exhibit little ability to retain water and nutrients due to their texture and mineralogy. Also, acquiring biomass for other than agricultural purposes can reduce the organic carbon accumulation and worsens the soil quality. Adding biochar to the soil can affect saturated hydraulic conductivity, water holding capacity and reduce soil erosion and mineral fertilization. It has been shown that saturated hydraulic conductivity depends on type of feedstock and pyrolysis temperatures used for biochar production and application dose but the results are inconsistent. Therefore, in order to explain the different biochar impacts, we propose in this study the use the physical-statistical model of B. Usowicz for predicting the saturated hydraulic conductivity using literature data for various soils amended with biochars (from woodchip, rice straw and dairy manure), pyrolyzed at 300, 500 and 700 °C.  </p><p>Soil with biochar and pores between them can be represented by a pattern (net) of more or less cylindrically interconnected channels with different capillary radius. When we view a porous medium as a net of interconnected capillaries, we can apply a statistical approach for the description of the liquid or gas flow. The soil and biochar phases and their configuration is decisive for pore distribution and the course of the water retention curve in this medium. The physical-statistical model considers the pore space as the capillary net that is represented by parallel and serial connections of hydraulic resistors in the layer and between the layers, respectively. The polynomial distribution was used in this model to determine probability of the occurrence of a given capillary configuration. Capillary size radii and the probability of occurrence of a given capillary configuration were calculated based on the measured water retention curve and saturated water content. It was found a good agreement between measured and the model-predicted hydraulic conductivity data for the biochar amended soils. It indicates that the used variables and model parameters to predict the saturated hydraulic conductivities of the soils were chosen correctly. The different types and pyrolysis temperatures of biochars affected the soil water retention and the equivalent length of the capillaries that characterize the pore tortuosity in the soil.</p><p> </p><p>Acknowledgements. Research was conducted under the project “Water in soil - satellite monitoring and improving the retention using biochar” no. BIOSTRATEG3/345940/7/NCBR/2017 which was financed by Polish National Centre for Research and Development in the framework of “Environment, agriculture and forestry” - BIOSTRATEG strategic R&D programme.</p>


2020 ◽  
Author(s):  
Mirko Castellini ◽  
Simone Di Prima ◽  
Anna Maria Stellacci ◽  
Massimo Iovino ◽  
Vincenzo Bagarello

<p>Testing new experimental procedures to assess the effects of the drops impact on the soil sealing formation is a main topic in soil hydrology.</p><p>In this field investigation, the methodological approach proposed first by Bagarello et al. (2014) was extended to account for a greater soil infiltration surface (i.e., about 3.5 times higher), a higher range and number of heights of water pouring and to evaluate the different impact on soil management. For this purpose, the effects of three water pouring heights (low, L=3 cm; medium, M=100 cm; high, H=200 cm) on both no-tilled (NT) and conventionally tilled (CT) loam soil were investigated by Beerkan infiltration runs and using the BEST-procedure of data analysis to estimate the soil hydraulic properties.</p><p>Final infiltration rate decreased when perturbing runs (i.e., M and H) were carried out as compared with the non-perturbing (L) ones (by a factor of 1.5-3.1 under NT and 3.4-4.4 under CT). Similarly, the water retention scale parameter, h<sub>g</sub>, increased (i.e., higher in absolute terms) by a factor 1.6-1.8 under NT and by a factor 1.7 under CT. Saturated hydraulic conductivity, K<sub>s</sub>, changed significantly as a function of the increase of water pouring height; regardless of the soil management, perturbing runs caused a reduction in soil permeability by a factor 5 or 6. Effects on hydraulic functions (i.e., soil water retention curve and hydraulic conductivity function), obtained with the BEST-Steady algorithm, were also highlighted. For instance, differences in water retention curve at fixed soil pressure head values (i.e., field capacity, FC, and permanent wilting point, PWP) due to perturbing and non-perturbing runs, were estimated as higher under NT (3.8%) than CT (3.4%) for FC, and equal to 2.1% or 1.6% for PWP.</p><p>Main results of this investigation confirm that a recently tilled loamy soil, without vegetation cover, can be less resilient as compared to a no-tilled one, and that tested water pouring heights methodology looks promising to mimic effects of high energy rainfall events and to quantify the soil sealing effects under alternative management of the soil.</p><p><strong>Acknowledgments</strong></p><p>The work was supported by the project “STRATEGA, Sperimentazione e TRAsferimento di TEcniche innovative di aGricoltura conservativA”, funded by Regione Puglia–Dipartimento Agricoltura, Sviluppo Rurale ed Ambientale, CUP: B36J14001230007.</p><p><strong> </strong><strong>References</strong></p><p>Bagarello, V., Castellini, M., Di Prima, S., Iovino, M. 2014. Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492–501. https://doi.org/10.1016/j.geoderma.2013.08.032</p>


Author(s):  
João José da Silva Junior ◽  
Alberto Colombo ◽  
Geraldo Cézar Oliveira ◽  
Bruno Montoani Silva ◽  
José Eduardo Juliaci Eugênio

 In the last few years, many studies have been published by authors from several countries offering approximations and use of the inverse method. However, the unique environmental conditions and distinct properties of the tropical soils in Brazil require extra considerations and the need to adjust these methods to tropical soil conditions. Considering the above, this determined the parameters of the van Genuchten (1980) model (θs, θr, α, n) of the water retention curve in the soils. It also determined the parameter (Ks) of the soil’s hydraulic conductivity curve by solving an inverse problem using the HYDRUS-2D model, considering cumulative infiltration data collected in the field by means of an infiltration test using the tension infiltrometer. It then compared the hydraulic properties determined by these methods in relation to the standard laboratory method. The inverse method was able to efficiently determine the water retention curves in the soils here studied; however, it was not possible to reliably determine the unsaturated hydraulic conductivity curve.


Sign in / Sign up

Export Citation Format

Share Document