scholarly journals Convolutional Neural Network-Based Cryptography Ransomware Detection for Low-End Embedded Processors

Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 705
Author(s):  
Hyunji Kim ◽  
Jaehoon Park ◽  
Hyeokdong Kwon ◽  
Kyoungbae Jang ◽  
Hwajeong Seo

A crypto-ransomware has the process to encrypt victim’s files. Afterward, the crypto-ransomware requests a ransom for the password of encrypted files to victims. In this paper, we present a novel approach to prevent crypto-ransomware by detecting block cipher algorithms for Internet of Things (IoT) platforms. We extract the sequence and frequency characteristics from the opcode of binary files for the 8-bit Alf and Vegard’s RISC (AVR) processor microcontroller. In other words, the late fusion method is used to extract two features from one source data, learn through each network, and integrate them. We classify the crypto-ransomware virus or harmless software through the proposed method. The general software from AVR packages and block cipher implementations written in C language from lightweight block cipher library(i.e., Fair Evaluation of Lightweight Cryptographic Systems (FELICS)) are trained through the deep learning network and evaluated. The general software and block cipher algorithms are successfully classified by training functions in binary files. Furthermore, we detect binary codes that encrypt a file using block ciphers. The detection rate is evaluated in terms of F-measure, which is the harmonic mean of precision and recall. The proposed method not only achieved 97% detection success rate for crypto-ransomware but also achieved 80% success rate in classification for each lightweight cryptographic algorithm and benign firmware. In addition, the success rate in classification for Substitution-Permutation-Network (SPN) structure, Addition-Rotation-eXclusive-or structures (ARX) structure, and benign firmware is 95%.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Bohun Kim ◽  
Junghoon Cho ◽  
Byungjun Choi ◽  
Jongsun Park ◽  
Hwajeong Seo

Recent lightweight block cipher competition (FELICS Triathlon) evaluates efficient implementations of block ciphers for Internet of things (IoT) environment. In the competition, the implementation of HIGHT block cipher achieved the most efficient lightweight block cipher, in terms of code size (ROM), memory (RAM), and execution time. In this paper, we further investigate lightweight features of HIGHT block cipher and present the optimized implementations of both software and hardware for low-end IoT platforms, including resource-constrained devices (8-bit AVR and 32-bit ARM Cortex-M3) and application-specific integrated circuit (ASIC). By using proposed optimization methods, the implemented HIGHT block cipher shows better performance compared to previous state-of-the-art implementations.


2019 ◽  
Vol 8 (2) ◽  
pp. 2104-2110

Recently, the study of lightweight symmetric ciphers has gained more importance because of high requirement in the services for security in the CCNs (Constrained Computing Environments): Wireless Sensor Network (WSN), Internet of Things (IoT). A lightweight cipher is a cryptographic algorithm which is used for low resource device, minimal area optimization, low power design and attains sufficient security level. Size of the key is considered as major challenges in the cryptographic algorithms, because it increases the complexity of the cryptographic algorithm. To overcome this issue and improve the security, Lorentz Chaotic System (LCS) based PRESENT architecture is introduced in this research. The PRESENT lightweight block cipher is selected due to it is most general and famous lightweight algorithms. Hence, the random numbers were generated for a key purpose by using an LCS circuit. The streaming data will be encrypt and decrypt by using this algorithm. In this research, the modified lightweight block cipher algorithm is called as LCS- PRESENT architecture. Finally, the performance of LCS - PRESENT architecture was evaluated by FPGA hardware utilizations such as Lookup Table (LUT), flip flop, slices, and frequency. The security level of LCS- PRESENT architecture was analysed based on encrypted and decrypted results in XILINX tool. The LCS- PRESENT architecture utilizes the FPGA device to attain maximum accuracy and throughput, such as 30 of LUTs, 115 of flip flops and 47 of slices from available sources compared to existing cryptographic algorithms.


2021 ◽  
pp. 000348942110189
Author(s):  
Gani Atilla Şengör ◽  
Ahmet Mert Bilgili

Objective: The sialendoscopy era in the treatment of salivary gland stones has reduced the use of classical surgical methods. However, the miniature ducts and tools may cause difficulties in removing large sialoliths. Therefore, invasive combined oral surgeries or gland resection may be considered. We searched for the most suitable method in order to stay in line with the minimally invasive approach that preserves the ductus anatomy, and that can reduce the surgical fears of patients. Materials and Methods: The study included 84 cases (23 parotid and 61 submandibular) in whom stones were fragmented by pneumatic lithotripsy and removed between January 2015 and January 2020. The parotid cases comprised 7 females and 16 males, and the submandibular cases comprised 25 females and 36 males. Intraductal lithotripsy was performed using pneumatic lithotripter. This study has fourth level of evidence. Results: Based on total number of cases (n = 84), success rate was 67/84 (79.7%) immediately after sialendoscopy, and overall success rate was 77/84 (91.6%). Based on number of stones treated (n = 111), our immediate success rate was 94/111 (84.6%), and overall success rate was 104/111 (93.7%). The success criteria were complete removal of the stone and fragments in a single sialendoscopy procedure and resolution of symptoms. Conclusions: We successfully treated salivary gland stones, including L3b stones, in our patient cohort with sialendoscopy combined with pneumatic lithotripsy. The lithotripsy method that we have adapted seems to be more useful and cost-effective compared to its alternatives. We were also able to preserve the ductus anatomy and relieve patients’ concerns. Level of Evidence: Level IV


2016 ◽  
Vol 11 (2) ◽  
pp. 252-264
Author(s):  
Weidong Qiu ◽  
Bozhong Liu ◽  
Can Ge ◽  
Lingzhi Xu ◽  
Xiaoming Tang ◽  
...  

Author(s):  
Xuan LIU ◽  
Wen-ying ZHANG ◽  
Xiang-zhong LIU ◽  
Feng LIU

2017 ◽  
Vol 11 (3) ◽  
Author(s):  
Günther Retscher ◽  
Hannes Hofer

AbstractFor Wi-Fi positioning location fingerprinting is very common but has the disadvantage that it is very labour consuming for the establishment of a database (DB) with received signal strength (RSS) scans measured on a large number of known reference points (RPs). To overcome this drawback a novel approach is developed which uses a logical sequence of intelligent checkpoints (iCPs) instead of RPs distributed in a regular grid. The iCPs are the selected RPs which have to be passed along the way for navigation from a start point A to the destination B. They are twofold intelligent because of the fact that they depend on their meaningful selection and because of their logical sequence in their correct order. Thus, always the following iCP is known due to a vector graph allocation in the DB and only a small limited number of iCPs needs to be tested when matching the current RSS scans. This reduces the required processing time significantly. It is proven that the iCP approach achieves a higher success rate than conventional approaches. In average correct matching results of 90.0% were achieved using a joint DB including RSS scans of all employed smartphones. An even higher success rate is achieved if the same mobile device is used in both the training and positioning phase.


Sign in / Sign up

Export Citation Format

Share Document