scholarly journals Detailed Study on the Behavior of Improved Beam T-Junctions Modeling for the Characterization of Tubular Structures, Based on Artificial Neural Networks Trained with Finite Element Models

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 943
Author(s):  
Francisco Badea ◽  
Jesus Angel Perez ◽  
Jose Luis Olazagoitia

The actual behavior of welded T-junctions in tubular structures depends strongly on the topology of the junction at the joint level. In finite element analysis, beam-type elements are usually employed due to their simplicity and low computational cost, even though they cannot reproduce the joints topologies and characteristics. To adjust their behavior to a more realistic situation, elastic elements can be introduced at the joint level, whose characteristics must be determined through costly validations. This paper studies the optimization and implementation of the validation data, through the creation of an optimal surrogate model based on neural networks, leading to a model that predicts the stiffness of elastic elements, introduced at the joint level based on available data. The paper focuses on how the neural network should be chosen, when training data is very limited and, more importantly, which of the available data should be used for training and which for verification. The methodology used is based on a Monte Carlo analysis that allows an exhaustive study of both the network parameters and the distribution and choice of the limited data in the training set to optimize its performance. The results obtained indicate that the use of neural networks without a careful methodology in this type of problems could lead to inaccurate results. It is also shown that a conscientious choice of training data, among the data available in the problem of choice of elastic parameters for T-junctions in finite elements, is fundamental to achieve functional surrogate models.

2021 ◽  
Vol 14 (2) ◽  
pp. 127-135
Author(s):  
Fadhil Yusuf Rahadika ◽  
Novanto Yudistira ◽  
Yuita Arum Sari

During the COVID-19 pandemic, many offline activities are turned into online activities via video meetings to prevent the spread of the COVID 19 virus. In the online video meeting, some micro-interactions are missing when compared to direct social interactions. The use of machines to assist facial expression recognition in online video meetings is expected to increase understanding of the interactions among users. Many studies have shown that CNN-based neural networks are quite effective and accurate in image classification. In this study, some open facial expression datasets were used to train CNN-based neural networks with a total number of training data of 342,497 images. This study gets the best results using ResNet-50 architecture with Mish activation function and Accuracy Booster Plus block. This architecture is trained using the Ranger and Gradient Centralization optimization method for 60000 steps with a batch size of 256. The best results from the training result in accuracy of AffectNet validation data of 0.5972, FERPlus validation data of 0.8636, FERPlus test data of 0.8488, and RAF-DB test data of 0.8879. From this study, the proposed method outperformed plain ResNet in all test scenarios without transfer learning, and there is a potential for better performance with the pre-training model. The code is available at https://github.com/yusufrahadika-facial-expressions-essay.


2020 ◽  
Vol 10 (2) ◽  
pp. 483 ◽  
Author(s):  
Eko Ihsanto ◽  
Kalamullah Ramli ◽  
Dodi Sudiana ◽  
Teddy Surya Gunawan

Many algorithms have been developed for automated electrocardiogram (ECG) classification. Due to the non-stationary nature of the ECG signal, it is rather challenging to use traditional handcraft methods, such as time-based analysis of feature extraction and classification, to pave the way for machine learning implementation. This paper proposed a novel method, i.e., the ensemble of depthwise separable convolutional (DSC) neural networks for the classification of cardiac arrhythmia ECG beats. Using our proposed method, the four stages of ECG classification, i.e., QRS detection, preprocessing, feature extraction, and classification, were reduced to two steps only, i.e., QRS detection and classification. No preprocessing method was required while feature extraction was combined with classification. Moreover, to reduce the computational cost while maintaining its accuracy, several techniques were implemented, including All Convolutional Network (ACN), Batch Normalization (BN), and ensemble convolutional neural networks. The performance of the proposed ensemble CNNs were evaluated using the MIT-BIH arrythmia database. In the training phase, around 22% of the 110,057 beats data extracted from 48 records were utilized. Using only these 22% labeled training data, our proposed algorithm was able to classify the remaining 78% of the database into 16 classes. Furthermore, the sensitivity ( S n ), specificity ( S p ), and positive predictivity ( P p ), and accuracy ( A c c ) are 99.03%, 99.94%, 99.03%, and 99.88%, respectively. The proposed algorithm required around 180 μs, which is suitable for real time application. These results showed that our proposed method outperformed other state of the art methods.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Ali Madani ◽  
Ahmed Bakhaty ◽  
Jiwon Kim ◽  
Yara Mubarak ◽  
Mohammad R. K. Mofrad

Finite element and machine learning modeling are two predictive paradigms that have rarely been bridged. In this study, we develop a parametric model to generate arterial geometries and accumulate a database of 12,172 2D finite element simulations modeling the hyperelastic behavior and resulting stress distribution. The arterial wall composition mimics vessels in atherosclerosis–a complex cardiovascular disease and one of the leading causes of death globally. We formulate the training data to predict the maximum von Mises stress, which could indicate risk of plaque rupture. Trained deep learning models are able to accurately predict the max von Mises stress within 9.86% error on a held-out test set. The deep neural networks outperform alternative prediction models and performance scales with amount of training data. Lastly, we examine the importance of contributing features on stress value and location prediction to gain intuitions on the underlying process. Moreover, deep neural networks can capture the functional mapping described by the finite element method, which has far-reaching implications for real-time and multiscale prediction tasks in biomechanics.


2021 ◽  
Vol 40 (7) ◽  
pp. 534-542
Author(s):  
Ricard Durall ◽  
Valentin Tschannen ◽  
Norman Ettrich ◽  
Janis Keuper

Interpreting seismic data requires the characterization of a number of key elements such as the position of faults and main reflections, presence of structural bodies, and clustering of areas exhibiting a similar amplitude versus angle response. Manual interpretation of geophysical data is often a difficult and time-consuming task, complicated by lack of resolution and presence of noise. In recent years, approaches based on convolutional neural networks have shown remarkable results in automating certain interpretative tasks. However, these state-of-the-art systems usually need to be trained in a supervised manner, and they suffer from a generalization problem. Hence, it is highly challenging to train a model that can yield accurate results on new real data obtained with different acquisition, processing, and geology than the data used for training. In this work, we introduce a novel method that combines generative neural networks with a segmentation task in order to decrease the gap between annotated training data and uninterpreted target data. We validate our approach on two applications: the detection of diffraction events and the picking of faults. We show that when transitioning from synthetic training data to real validation data, our workflow yields superior results compared to its counterpart without the generative network.


2021 ◽  
pp. 1-28
Author(s):  
Ahmed Abdulhamid Mahmoud ◽  
Salaheldin Elkatatny

Abstract Evaluation of the quality of unconventional hydrocarbon resources becomes a critical stage toward characterizing these resources, this evaluation requires evaluation of the total organic carbon (TOC). Generally, TOC is determined from laboratory experiments, however, it is hard to obtain a continuous profile for the TOC along the drilled formations using these experiments. Another way to evaluate the TOC is through the use of empirical correlation, the currently available correlations lack the accuracy especially when used in formations other than the ones used to develop these correlations. This study introduces an empirical equation for evaluation of the TOC in Devonian Duvernay shale from only gamma-ray and spectral gamma-ray logs of uranium, thorium, and potassium as well as a newly developed term that accounts for the TOC from the linear regression analysis. This new correlation was developed based on the artificial neural networks (ANN) algorithm which was learned on 750 datasets from Well-A. The developed correlation was tested and validated on 226 and 73 datasets from Well-B and Well-C, respectively. The results of this study indicated that for the training data, the TOC was predicted by the ANN with an AAPE of only 8.5%. Using the developed equation, the TOC was predicted with an AAPE of only 11.5% for the testing data. For the validation data, the developed equation overperformed the previous models in estimating the TOC with an AAPE of only 11.9%.


2021 ◽  
Author(s):  
Recep M. Gorguluarslan ◽  
Gorkem Can Ates ◽  
O. Utku Gungor ◽  
Yusuf Yamaner

Abstract Additive manufacturing introduces geometric uncertainties on the fabricated strut members of lattice structures. These uncertainties lead to deviations between the simulation result and the fabricated mechanical performance. Although these uncertainties can be characterized and quantified in the existing literature, the generation of a high number of samples for the quantified uncertainties to use in the computer-aided design of lattice structures for different strut diameters and angles requires high experimental effort and computational cost. The use of deep neural network models to accurately predict the samples of uncertainties is studied in this research to address this issue. For the training data, the geometric uncertainties on the fabricated struts introduced by the material extrusion process are characterized from microscope measurements using random field theory. These uncertainties are propagated to effective diameters of the strut members using a stochastic upscaling technique. The relationship between the deterministic strut model parameters, namely the model diameter and angle, and the effective diameter with propagated uncertainties is established through a deep neural network model. The validation data results show accurate predictions for the effective diameter when model parameters are given as inputs. Thus, the proposed model has the potential to use the fabricated results in the design optimization processes without requiring computationally expensive repetitive simulations.


2020 ◽  
pp. 204141962097057
Author(s):  
Adam A Dennis ◽  
Jordan J Pannell ◽  
Danny J Smyl ◽  
Sam E Rigby

Explosive loading in a confined internal environment is highly complex and is driven by nonlinear physical processes associated with reflection and coalescence of multiple shock fronts. Prediction of this loading is not currently feasible using simple tools, and instead specialist computational software or practical testing is required, which are impractical for situations with a wide range of input variables. There is a need to develop a tool which balances the accuracy of experiments or physics-based numerical schemes with the simplicity and low computational cost of an engineering-level predictive approach. Artificial neural networks (ANNs) are formed of a collection of neurons that process information via a series of connections. When fully trained, ANNs are capable of replicating and generalising multi-parameter, high-complexity problems and are able to generate new predictions for unseen problems (within the bounds of the training variables). This article presents the development and rigorous testing of an ANN to predict blast loading in a confined internal environment. The ANN was trained using validated numerical modelling data, and key parameters relating to formulation of the training data and network structure were critically analysed in order to maximise the predictive capability of the network. The developed network was generally able to predict specific impulses to within 10% of the numerical data: 90% of specific impulses in the unseen testing data, and between 81% and 87% of specific impulses for data from four additional unseen test models, were predicted to this accuracy. The network was highly capable of generalising in areas adjacent to reflecting surfaces and as those close to ambient outflow boundaries. It is shown that ANNs are highly suited to modelling blast loading in a confined internal environment, with significant improvements in accuracy achievable if a robust, well distributed training dataset is used with a network structure that is tailored to the problem being solved.


2021 ◽  
pp. 112070002098752
Author(s):  
Michael Murphy ◽  
Cameron Killen ◽  
Robert Burnham ◽  
Fahad Sarvari ◽  
Karen Wu ◽  
...  

Background: A critical part in preoperative planning for revision arthroplasty surgery involves the identification of the failed implant. Using a predictive artificial neural network (ANN) model, the objectives of this study were: (1) to develop a machine-learning algorithm using operative big data to identify an implant from a radiograph; and (2) to compare algorithms that optimise accuracy in a timely fashion. Methods: Using 2116 postoperative anteroposterior (AP) hip radiographs of total hip arthroplasties from 2002 to 2019, 10 artificial neural networks were modeled and trained to classify the radiograph according to the femoral stem implanted. Stem brand and model was confirmed with 1594 operative reports. Model performance was determined by classification accuracy toward a random 706 AP hip radiographs, and again on a consecutive series of 324 radiographs prospectively collected over 2019. Results: The Dense-Net 201 architecture outperformed all others with 100.00% accuracy in training data, 95.15% accuracy on validation data, and 91.16% accuracy in the unique prospective series of patients. This outperformed all other models on the validation ( p < 0.0001) and novel series ( p < 0.0001). The convolutional neural network also displayed the probability (confidence) of the femoral stem classification for any input radiograph. This neural network averaged a runtime of 0.96 (SD 0.02) seconds for an iPhone 6 to calculate from a given radiograph when converted to an application. Conclusions: Neural networks offer a useful adjunct to the surgeon in preoperative identification of the prior implant.


2013 ◽  
Vol 19 (4) ◽  
pp. 558-573 ◽  
Author(s):  
Mustafa Yilmaz

There has been a need for geodetic network densification since the early days of traditional surveying. In order to densify geodetic networks in a way that will produce the most effective reference frame improvements, the crustal velocity field must be modelled. Artificial Neural Networks (ANNs) are widely used as function approximators in diverse fields of geoinformatics including velocity field determination. Deciding the number of hidden neurons required for the implementation of an arbitrary function is one of the major problems of ANN that still deserves further exploration. Generally, the number of hidden neurons is decided on the basis of experience. This paper attempts to quantify the significance of pruning away hidden neurons in ANN architecture for velocity field determination. An initial back propagation artificial neural network (BPANN) with 30 hidden neurons is educated by training data and resultant BPANN is applied on test and validation data. The number of hidden neurons is subsequently decreased, in pairs from 30 to 2, to achieve the best predicting model. These pruned BPANNs are retrained and applied on the test and validation data. Some existing methods for selecting the number of hidden neurons are also used. The results are evaluated in terms of the root mean square error (RMSE) over a study area for optimizing the number of hidden neurons in estimating densification point velocity by BPANN.


2019 ◽  
Vol 1 (1) ◽  
pp. 496-503 ◽  
Author(s):  
Maria Mihaela Truşcă

Abstract Support Vector Machine model is one of the most intensive used text data classifiers ever since the moment of its development. However, its performance depends not only on its features but also on data preprocessing and model tuning. The main purpose of this paper is to compare the efficiency of more Support Vector Machine models using both TF-IDF approach and Word2Vec and Doc2Vec neural networks for text data representation. Besides the data vectorization process, I try to enhance the models’ efficiency by identifying which kind of kernel fits better the data or if it is just better to opt for the linear case. My results prove that for the “Reuters 21578” dataset, nonlinear Support Vector Machine is more efficient when the conversion of text data into numerical attributes is realized using Word2Vec models instead of TF-IDF and Doc2Vec representations. When it is considered that data meet linear separability requirements, TF-IDF representation outperforms all other options. Surprisingly, Doc2Vec models have the lowest performance and only in terms of computational cost they provide satisfactory results. This paper proves that while Word2Vec models are truly efficient for text data representation, Doc2Vec neural networks are unable to exceed even TF-IDF index representation. This evidence contradicts the common idea according to which Doc2Vec models should provide a better insight into the training data domain than Word2Vec models and certainly than the TF-IDF index.


Sign in / Sign up

Export Citation Format

Share Document