scholarly journals An Enhanced DC-Link Voltage Response for Wind-Driven Doubly Fed Induction Generator Using Adaptive Fuzzy Extended State Observer and Sliding Mode Control

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 963
Author(s):  
Mohammed Mazen Alhato ◽  
Mohamed N. Ibrahim ◽  
Hegazy Rezk ◽  
Soufiene Bouallègue

This paper presents an enhancement method to improve the performance of the DC-link voltage loop regulation in a Doubly-Fed Induction Generator (DFIG)- based wind energy converter. An intelligent, combined control approach based on a metaheuristics-tuned Second-Order Sliding Mode (SOSM) controller and an adaptive fuzzy-scheduled Extended State Observer (ESO) is proposed and successfully applied. The proposed fuzzy gains-scheduling mechanism is performed to adaptively tune and update the bandwidth of the ESO while disturbances occur. Besides common time-domain performance indexes, bounded limitations on the effective parameters of the designed Super Twisting (STA)-based SOSM controllers are set thanks to the Lyapunov theory and used as nonlinear constraints for the formulated hard optimization control problem. A set of advanced metaheuristics, such as Thermal Exchange Optimization (TEO), Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Harmony Search Algorithm (HSA), Water Cycle Algorithm (WCA), and Grasshopper Optimization Algorithm (GOA), is considered to solve the constrained optimization problem. Demonstrative simulation results are carried out to show the superiority and effectiveness of the proposed control scheme in terms of grid disturbances rejection, closed-loop tracking performance, and robustness against the chattering phenomenon. Several comparisons to our related works, i.e., approaches based on TEO-tuned PI controller, TEO-tuned STA-SOSM controller, and STA-SOSM controller-based linear observer, are presented and discussed.

2020 ◽  
Vol 64 (4) ◽  
pp. 374-381
Author(s):  
Djamila Cherifi ◽  
Yahia Miloud

In this paper, we are interested in the development of a robust control of active and reactive power for a Doubly Fed Induction Generator for variable speed wind energy using hybrid control by Adaptive Fuzzy logic and Sliding Mode Controller (AFSMC). This type of control is introduced to avoid the major disadvantage of variable structures systems which is the chattering phenomenon. Using the variable structure is to ensure the high dynamic of convergence and the robustness towards parametric variations and disturbances. Whereas the fuzzy control is introduced here in order to remove residual vibrations in high frequencies. Simulation results show that the proposed control strategy gives better results.


Author(s):  
Xiling Shi ◽  
Yunqiang Sun ◽  
Xingling Shao

This paper focuses on robust output tracking control for quadrotors exposed to parametric uncertainties and external disturbances. Based on the back-stepping control principle, the quadrotor dynamics is decomposed into translational and rotational subsystems. To handle the limitation of traditional extended state observer that can only be effective for integral-chain systems, a high-order extended state observer with special structure is developed to estimate the unmeasurable states and the lumped disturbances in rotational subsystem simultaneously. To avoid the tedious analysis and repeated differentiation of virtual control laws in the back-stepping technique, a first-order sliding mode differentiator is introduced to compute the derivative of virtual control law at each step in the presence of disturbances. The stability analysis is established using the Lyapunov theory. Simulation results demonstrate the effectiveness of the proposed control scheme in achieving a guaranteed tracking performance with respect to an 8-shaped reference trajectory.


2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098603
Author(s):  
Daoxiong Gong ◽  
Mengyao Pei ◽  
Rui He ◽  
Jianjun Yu

Pneumatic artificial muscles (PAMs) are expected to play an important role in endowing the advanced robot with the compliant manipulation, which is very important for a robot to coexist and cooperate with humans. However, the strong nonlinear characteristics of PAMs hinder its wide application in robots, and therefore, advanced control algorithms are urgently needed for making the best use of the advantages and bypassing the disadvantages of PAMs. In this article, we propose a full-order sliding mode control extended state observer (fSMC-ESO) algorithm that combines the ESO and the fSMC for a robotic joint actuated by a pair of antagonistic PAMs. The fSMC is employed to eliminate the chattering and to guarantee the finite-time convergence, and the ESO is adopted to observe both the total disturbance and the states of the robot system, so that we can inhibit the disturbance and compensate the nonlinearity efficiently. Both simulations and physical experiments are conducted to validate the proposed method. We suggest that the proposed method can be applied to the robotic systems actuated by PAMs and remarkably improve the performance of the robot system.


2019 ◽  
Vol 41 (13) ◽  
pp. 3581-3599 ◽  
Author(s):  
Umesh Kumar Sahu ◽  
Bidyadhar Subudhi ◽  
Dipti Patra

Currently, space robots such as planetary robots and flexible-link manipulators (FLMs) are finding specific applications to reduce the cost of launching. However, the structural flexible nature of their arms and joints leads to errors in tip positioning owing to tip deflection. The internal model uncertainties and disturbance are the key challenges in the development of control strategies for tip-tracking of FLMs. To deal with these challenges, we design a tip-tracking controller for a two-link flexible manipulator (TLFM) by developing a sampled-data extended state observer (SD-ESO). It is designed to reconstruct uncertain parameters for accurate tip-tracking control of a TLFM. Finally, a backstepping (BS) controller is designed to attenuate the estimation error and other bounded disturbances. Convergence and stability of the proposed control system are investigated by using Lyapunov theory. The benefits (control performance and robustness) of the proposed SD-ESO-based BS controller are compared with other similar approaches by pursuing both simulation and experimental studies. It is observed from the results obtained that SD-ESO-based BS Controller effectively compensates the deviation in tip-tracking performance of TLFM due to non-minimum phase behavior and model uncertainties with an improved transient response.


Sign in / Sign up

Export Citation Format

Share Document