scholarly journals Dynamical Behavior Analysis of a Time-Delay SIRS-L Model in Rechargeable Wireless Sensor Networks

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 2007
Author(s):  
Guiyun Liu ◽  
Junqiang Li ◽  
Zhongwei Liang ◽  
Zhimin Peng

The traditional SIRS virus propagation model is used to analyze the malware propagation behavior of wireless rechargeable sensor networks (WRSNs) by adding a new concept: the low-energy status nodes. The SIRS-L model has been developed in this article. Furthermore, the influence of time delay during the charging behavior of the low-energy status nodes needs to be considered. Hopf bifurcation is studied by discussing the time delay that is chosen as the bifurcation parameter. Finally, the properties of the Hopf bifurcation are explored by applying the normal form theory and the center manifold theorem.

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Zizhen Zhang ◽  
Ruibin Wei ◽  
Wanjun Xia

AbstractIn this paper, we are concerned with a delayed smoking model in which the population is divided into five classes. Sufficient conditions guaranteeing the local stability and existence of Hopf bifurcation for the model are established by taking the time delay as a bifurcation parameter and employing the Routh–Hurwitz criteria. Furthermore, direction and stability of the Hopf bifurcation are investigated by applying the center manifold theorem and normal form theory. Finally, computer simulations are implemented to support the analytic results and to analyze the effects of some parameters on the dynamical behavior of the model.


2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

This paper is devoted to the study of an SIRS computer virus propagation model with two delays and multistate antivirus measures. We demonstrate that the system loses its stability and a Hopf bifurcation occurs when the delay passes through the corresponding critical value by choosing the possible combination of the two delays as the bifurcation parameter. Moreover, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are determined by means of the center manifold theorem and the normal form theory. Finally, some numerical simulations are performed to illustrate the obtained results.


2020 ◽  
Vol 13 (02) ◽  
pp. 2050009 ◽  
Author(s):  
Subhas Khajanchi

Due to the unpredictable growth of tumor cells, the tumor–immune interactive dynamics continues to draw attention from both applied mathematicians and oncologists. Mathematical modeling is a powerful tool to improve our understanding of the complicated biological system for tumor growth. With this goal, we report a mathematical model which describes how tumor cells evolve and survive the brief encounter with the immune system mediated by immune effector cells and host cells which includes discrete time delay. We analyze the basic mathematical properties of the considered model such as positivity of the system and the boundedness of the solutions. By analyzing the distribution of eigenvalues, local stability analysis of the biologically feasible equilibria and the existence of Hopf bifurcation are obtained in which discrete time delay is used as a bifurcation parameter. Based on the normal form theory and center manifold theorem, we obtain explicit expressions to determine the direction of Hopf bifurcation and the stability of Hopf bifurcating periodic solutions. Numerical simulations are carried out to illustrate the rich dynamical behavior of the delayed tumor model. Our model simulations demonstrate that the delayed tumor model exhibits regular and irregular periodic oscillations or chaotic behaviors, which indicate the scenario of long-term tumor relapse.


2016 ◽  
Vol 30 (28n29) ◽  
pp. 1640009 ◽  
Author(s):  
Yunxian Dai ◽  
Yiping Lin ◽  
Huitao Zhao ◽  
Chaudry Masood Khalique

In this paper, a delayed computer virus propagation model with a saturation incidence rate and a time delay describing temporary immune period is proposed and its dynamical behaviors are studied. The threshold value [Formula: see text] is given to determine whether the virus dies out completely. By comparison arguments and iteration technique, sufficient conditions are obtained for the global asymptotic stabilities of the virus-free equilibrium and the virus equilibrium. Taking the delay as a parameter, local Hopf bifurcations are demonstrated. Furthermore, the direction of Hopf bifurcation and the stabilities of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations (FDEs). Finally, numerical simulations are carried out to illustrate the main theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Yougang Wang ◽  
Luca Guerrini

This paper is concerned with a delayed SVEIR worm propagation model with saturated incidence. The main objective is to investigate the effect of the time delay on the model. Sufficient conditions for local stability of the positive equilibrium and existence of a Hopf bifurcation are obtained by choosing the time delay as the bifurcation parameter. Particularly, explicit formulas determining direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are derived by using the normal form theory and the center manifold theorem. Numerical simulations for a set of parameter values are carried out to illustrate the analytical results.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Zizhen Zhang ◽  
Limin Song

A four-compartment computer virus propagation model with two delays and graded infection rate is investigated in this paper. The critical values where a Hopf bifurcation occurs are obtained by analyzing the distribution of eigenvalues of the corresponding characteristic equation. In succession, direction and stability of the Hopf bifurcation when the two delays are not equal are determined by using normal form theory and center manifold theorem. Finally, some numerical simulations are also carried out to justify the obtained theoretical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Junli Liu ◽  
Tailei Zhang

To understand the interaction between the insects and the plants, a system of delay differential equations is proposed and studied. We prove that if R0≤1, the disease-free equilibrium is globally asymptotically stable for any length of time delays by constructing a Lyapunov functional, and the system admits a unique endemic equilibrium if R0>1. We establish the sufficient conditions for the stability of the endemic equilibrium and existence of Hopf bifurcation. Using the normal form theory and center manifold theorem, the explicit formulae which determine the stability, direction, and other properties of bifurcating periodic solutions are derived. Some numerical simulations are given to confirm our analytic results.


2017 ◽  
Vol 2017 ◽  
pp. 1-17
Author(s):  
Zizhen Zhang ◽  
Yougang Wang ◽  
Dianjie Bi ◽  
Luca Guerrini

A further generalization of an SEIQRS-V (susceptible-exposed-infectious-quarantined-recovered-susceptible with vaccination) computer virus propagation model is the main topic of the present paper. This paper specifically analyzes effects on the asymptotic dynamics of the computer virus propagation model when two time delays are introduced. Sufficient conditions for the asymptotic stability and existence of the Hopf bifurcation are established by regarding different combination of the two delays as the bifurcation parameter. Moreover, explicit formulas that determine the stability, direction, and period of the bifurcating periodic solutions are obtained with the help of the normal form theory and center manifold theorem. Finally, numerical simulations are employed for supporting the obtained analytical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Wanjun Xia ◽  
Soumen Kundu ◽  
Sarit Maitra

A delayed ecoepidemic model with ratio-dependent transmission rate has been proposed in this paper. Effects of the time delay due to the gestation of the predator are the main focus of our work. Sufficient conditions for local stability and existence of a Hopf bifurcation of the model are derived by regarding the time delay as the bifurcation parameter. Furthermore, properties of the Hopf bifurcation are investigated by using the normal form theory and the center manifold theorem. Finally, numerical simulations are carried out in order to validate our obtained theoretical results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Kankan Sarkar ◽  
Subhas Khajanchi ◽  
Prakash Chandra Mali ◽  
Juan J. Nieto

In this study, we investigate a mathematical model that describes the interactive dynamics of a predator-prey system with different kinds of response function. The positivity, boundedness, and uniform persistence of the system are established. We investigate the biologically feasible singular points and their stability analysis. We perform a comparative study by considering different kinds of functional responses, which suggest that the dynamical behavior of the system remains unaltered, but the position of the bifurcation points altered. Our model system undergoes Hopf bifurcation with respect to the growth rate of the prey population, which indicates that a periodic solution occurs around a fixed point. Also, we observed that our predator-prey system experiences transcritical bifurcation for the prey population growth rate. By using normal form theory and center manifold theorem, we investigate the direction and stability of Hopf bifurcation. The biological implications of the analytical and numerical findings are also discussed in this study.


Sign in / Sign up

Export Citation Format

Share Document