scholarly journals Collaborative Knowledge-Enhanced Recommendation with Self-Supervisions

Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2129
Author(s):  
Zhiqiang Pan ◽  
Honghui Chen

Knowledge-enhanced recommendation (KER) aims to integrate the knowledge graph (KG) into collaborative filtering (CF) for alleviating the sparsity and cold start problems. The state-of-the-art graph neural network (GNN)–based methods mainly focus on exploiting the connectivity between entities in the knowledge graph, while neglecting the interaction relation between items reflected in the user-item interactions. Moreover, the widely adopted BPR loss for model optimization fails to provide sufficient supervisions for learning discriminative representation of users and items. To address these issues, we propose the collaborative knowledge-enhanced recommendation (CKER) method. Specifically, CKER proposes a collaborative graph convolution network (CGCN) to learn the user and item representations from the connection between items in the constructed interaction graph and the connectivity between entities in the knowledge graph. Moreover, we introduce the self-supervised learning to maximize the mutual information between the interaction- and knowledge-aware user preferences by deriving additional supervision signals. We conduct comprehensive experiments on two benchmark datasets, namely Amazon-Book and Last-FM, and the experimental results show that CKER can outperform the state-of-the-art baselines in terms of recall and NDCG on knowledge-enhanced recommendation.

2021 ◽  
Author(s):  
Omar Nada

<div>Session-based recommendation is the task of predicting user actions during short online sessions. Previous work considers the user to be anonymous in this setting, with no past behavior history available. In reality, this is often not the case, and none of the existing approaches are flexible enough to seamlessly integrate user history when available. In this thesis, we propose a novel hybrid session-based recommender system to perform next-click prediction, which is able to take advantage of historical user preferences when accessible. Specifically, we propose SessNet, a deep profiling session-based recommender system, with a two-stage dichotomy. First, we use bidirectional transformers to model local and global session intent. Second, we concatenate any user information with the current session representation to feed to a feed-forward neural network to identify the next click. Historical user preferences are computed using the sequence-aware embeddings obtained from the first step, allowing us to better understand the users. We evaluate the efficacy of the proposed method using two benchmark datasets, YooChoose1/64 and Dignetica. Our experimental results show that SessNet outperforms state-of-the-art session-based recommenders on P@20 for both datasets.</div>


Author(s):  
Xiang Wang ◽  
Dingxian Wang ◽  
Canran Xu ◽  
Xiangnan He ◽  
Yixin Cao ◽  
...  

Incorporating knowledge graph into recommender systems has attracted increasing attention in recent years. By exploring the interlinks within a knowledge graph, the connectivity between users and items can be discovered as paths, which provide rich and complementary information to user-item interactions. Such connectivity not only reveals the semantics of entities and relations, but also helps to comprehend a user’s interest. However, existing efforts have not fully explored this connectivity to infer user preferences, especially in terms of modeling the sequential dependencies within and holistic semantics of a path.In this paper, we contribute a new model named Knowledgeaware Path Recurrent Network (KPRN) to exploit knowledge graph for recommendation. KPRN can generate path representations by composing the semantics of both entities and relations. By leveraging the sequential dependencies within a path, we allow effective reasoning on paths to infer the underlying rationale of a user-item interaction. Furthermore, we design a new weighted pooling operation to discriminate the strengths of different paths in connecting a user with an item, endowing our model with a certain level of explainability. We conduct extensive experiments on two datasets about movie and music, demonstrating significant improvements over state-of-the-art solutions Collaborative Knowledge Base Embedding and Neural Factorization Machine.


2021 ◽  
Author(s):  
Omar Nada

<div>Session-based recommendation is the task of predicting user actions during short online sessions. Previous work considers the user to be anonymous in this setting, with no past behavior history available. In reality, this is often not the case, and none of the existing approaches are flexible enough to seamlessly integrate user history when available. In this thesis, we propose a novel hybrid session-based recommender system to perform next-click prediction, which is able to take advantage of historical user preferences when accessible. Specifically, we propose SessNet, a deep profiling session-based recommender system, with a two-stage dichotomy. First, we use bidirectional transformers to model local and global session intent. Second, we concatenate any user information with the current session representation to feed to a feed-forward neural network to identify the next click. Historical user preferences are computed using the sequence-aware embeddings obtained from the first step, allowing us to better understand the users. We evaluate the efficacy of the proposed method using two benchmark datasets, YooChoose1/64 and Dignetica. Our experimental results show that SessNet outperforms state-of-the-art session-based recommenders on P@20 for both datasets.</div>


2018 ◽  
Author(s):  
Roman Zubatyuk ◽  
Justin S. Smith ◽  
Jerzy Leszczynski ◽  
Olexandr Isayev

<p>Atomic and molecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore represent different modalities of the same quantum phenomena. Here we present AIMNet, a modular and chemically inspired deep neural network potential. We used AIMNet with multitarget training to learn multiple modalities of the state of the atom in a molecular system. The resulting model shows on several benchmark datasets the state-of-the-art accuracy, comparable to the results of orders of magnitude more expensive DFT methods. It can simultaneously predict several atomic and molecular properties without an increase in computational cost. With AIMNet we show a new dimension of transferability: the ability to learn new targets utilizing multimodal information from previous training. The model can learn implicit solvation energy (like SMD) utilizing only a fraction of original training data, and archive MAD error of 1.1 kcal/mol compared to experimental solvation free energies in MNSol database.</p>


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 344
Author(s):  
Alejandro Humberto García Ruiz ◽  
Salvador Ibarra Martínez ◽  
José Antonio Castán Rocha ◽  
Jesús David Terán Villanueva ◽  
Julio Laria Menchaca ◽  
...  

Electricity is one of the most important resources for the growth and sustainability of the population. This paper assesses the energy consumption and user satisfaction of a simulated air conditioning system controlled with two different optimization algorithms. The algorithms are a genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system considering user preferences. It is worth noting that we made several modifications to the objective function’s definition to make it more robust. The energy-saving optimization is essential to reduce CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable, yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and decrease electrical energy consumption. To assess the experimentation, we constructed a simulator by training a backpropagation neural network with real data from a laboratory’s air conditioning system. According to the results, we conclude that NSGA II provides better results than the state of the art (GA) regarding user preferences and energy-saving.


2021 ◽  
Vol 54 (1) ◽  
pp. 1-39
Author(s):  
Zara Nasar ◽  
Syed Waqar Jaffry ◽  
Muhammad Kamran Malik

With the advent of Web 2.0, there exist many online platforms that result in massive textual-data production. With ever-increasing textual data at hand, it is of immense importance to extract information nuggets from this data. One approach towards effective harnessing of this unstructured textual data could be its transformation into structured text. Hence, this study aims to present an overview of approaches that can be applied to extract key insights from textual data in a structured way. For this, Named Entity Recognition and Relation Extraction are being majorly addressed in this review study. The former deals with identification of named entities, and the latter deals with problem of extracting relation between set of entities. This study covers early approaches as well as the developments made up till now using machine learning models. Survey findings conclude that deep-learning-based hybrid and joint models are currently governing the state-of-the-art. It is also observed that annotated benchmark datasets for various textual-data generators such as Twitter and other social forums are not available. This scarcity of dataset has resulted into relatively less progress in these domains. Additionally, the majority of the state-of-the-art techniques are offline and computationally expensive. Last, with increasing focus on deep-learning frameworks, there is need to understand and explain the under-going processes in deep architectures.


Author(s):  
Siva Reddy ◽  
Mirella Lapata ◽  
Mark Steedman

In this paper we introduce a novel semantic parsing approach to query Freebase in natural language without requiring manual annotations or question-answer pairs. Our key insight is to represent natural language via semantic graphs whose topology shares many commonalities with Freebase. Given this representation, we conceptualize semantic parsing as a graph matching problem. Our model converts sentences to semantic graphs using CCG and subsequently grounds them to Freebase guided by denotations as a form of weak supervision. Evaluation experiments on a subset of the Free917 and WebQuestions benchmark datasets show our semantic parser improves over the state of the art.


Author(s):  
FRANCK LECLERC ◽  
RÉJEAN PLAMONDON

This paper is a follow up to an article published in 1989 by R. Plamondon and G. Lorette on the state of the art in automatic signature verification and writer identification. It summarizes the activity from year 1989 to 1993 in automatic signature verification. For this purpose, we report on the different projects dealing with dynamic, static and neural network approaches. In each section, a brief description of the major investigations is given.


2021 ◽  
Author(s):  
Muhammad Shahroz Nadeem ◽  
Sibt Hussain ◽  
Fatih Kurugollu

This paper solves the textual deblurring problem, In this paper we propose a new loss function, we provide empirical evaluation of the design choices based on which a memory friendly CNN model is proposed, that performs better then the state of the art CNN method.


2023 ◽  
Vol 55 (1) ◽  
pp. 1-39
Author(s):  
Thanh Tuan Nguyen ◽  
Thanh Phuong Nguyen

Representing dynamic textures (DTs) plays an important role in many real implementations in the computer vision community. Due to the turbulent and non-directional motions of DTs along with the negative impacts of different factors (e.g., environmental changes, noise, illumination, etc.), efficiently analyzing DTs has raised considerable challenges for the state-of-the-art approaches. For 20 years, many different techniques have been introduced to handle the above well-known issues for enhancing the performance. Those methods have shown valuable contributions, but the problems have been incompletely dealt with, particularly recognizing DTs on large-scale datasets. In this article, we present a comprehensive taxonomy of DT representation in order to purposefully give a thorough overview of the existing methods along with overall evaluations of their obtained performances. Accordingly, we arrange the methods into six canonical categories. Each of them is then taken in a brief presentation of its principal methodology stream and various related variants. The effectiveness levels of the state-of-the-art methods are then investigated and thoroughly discussed with respect to quantitative and qualitative evaluations in classifying DTs on benchmark datasets. Finally, we point out several potential applications and the remaining challenges that should be addressed in further directions. In comparison with two existing shallow DT surveys (i.e., the first one is out of date as it was made in 2005, while the newer one (published in 2016) is an inadequate overview), we believe that our proposed comprehensive taxonomy not only provides a better view of DT representation for the target readers but also stimulates future research activities.


Sign in / Sign up

Export Citation Format

Share Document