scholarly journals A Stackelberg Game Approach toward Migration of Enterprise Applications to the Cloud

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2348
Author(s):  
Shiyong Li ◽  
Wenzhe Li ◽  
Huan Liu ◽  
Wei Sun

With the development of cloud computing, more and more cloud resources are rented or purchased by users. Using an economics approach to achieve cloud resource management has been thought of as a good choice for an enterprise user to complete an application’s migration and deployment into the public cloud. During an application’s migration process, it is important but very challenging to achieve the satisfaction of both the enterprise user and the public cloud provider at the same time. In this paper, we apply an economics approach to investigate the migration optimization problem during the migration process of applications from the enterprise user’s data center to the remote public cloud. We consider the application migration time of the enterprise user and the energy consumption of physical machines, and establish a single static round optimization problem for both the enterprise user and the cloud provider on the premise of satisfying the quality of experience (QoE) based on the Stackelberg game, where the public cloud provider is leader and the enterprise user is follower. Then we propose a novel algorithm to find the optimal physical machine placement for application migration. After that, we further consider that an enterprise user needs to migrate several applications, and extend the single-round static game to the multi-round dynamic game, where the energy consumption costs of the physical machines are reduced by adjusting the states of the physical machines in each round. We finally illustrate the performance of our scheme through some simulation results.

2020 ◽  
Vol 13 (3) ◽  
pp. 21-36
Author(s):  
Jitendra Singh ◽  
Kamlesh Kumar Raghuvanshi

Security is a critical issue particularly in public cloud as it rests with the cloud providers. During security implementation, prevailing security threats and regulatory standards are borne in mind. Regulatory compliance varies from one cloud provider to another according to their maturity and location of the data center. Thus, subscribers need to verify the security requirement meeting their objective and the one implemented by the public cloud provider. To this end, subscribers need to visit each cloud provider's site to view the compliance. This is a time-consuming activity at the same time difficult to locate on a website. This work presents the prominent security standards suggested by the leading security institutions including NIST, CSA, ENISA, ISO, etc., that are applicable to the public cloud. A centrally-driven scheme is proposed in order to empower the subscriber to know the regulation and standards applicable according to their services need. The availability of an exhaustive list at one place will lower the users hassle at subscription time.


Author(s):  
Kevin Foltz ◽  
William R. Simpson

The Enterprise Level Security (ELS) model focuses on designing secure, distributed web-based systems starting from basic principles. One area of ELS that poses significant design challenges is protection of web server private keys in a public cloud. Web server private keys are of critical importance because they control who can act as the server to represent the enterprise. This includes responding to requests as well as making requests within the enterprise and to its partners. The cloud provider is not part of this trusted network of servers, so the cloud provider should not have access to server private keys. However, current cloud systems are designed to allow cloud providers free access to server private keys. This paper proposes design solutions to securely manage private keys in a public cloud. An examination of commonly used approaches demonstrates the ease with which cloud providers can currently control server private keys. Two designs are proposed to prevent cloud provider access to keys, and their implementation issues are discussed.


Computers ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 81 ◽  
Author(s):  
Natalija Vlajic ◽  
Mashruf Chowdhury ◽  
Marin Litoiu

In recent years, a trend that has been gaining particular popularity among cybercriminals is the use of public Cloud to orchestrate and launch distributed denial of service (DDoS) attacks. One of the suspected catalysts for this trend appears to be the increased tightening of regulations and controls against IP spoofing by world-wide Internet service providers (ISPs). Three main contributions of this paper are (1) For the first time in the research literature, we provide a comprehensive look at a number of possible attacks that involve the transmission of spoofed packets from or towards the virtual private servers hosted by a public Cloud provider. (2) We summarize the key findings of our research on the regulation of IP spoofing in the acceptable-use and term-of-service policies of 35 real-world Cloud providers. The findings reveal that in over 50% of cases, these policies make no explicit mention or prohibition of IP spoofing, thus failing to serve as a potential deterrent. (3) Finally, we describe the results of our experimental study on the actual practical feasibility of IP spoofing involving a select number of real-world Cloud providers. These results show that most of the tested public Cloud providers do a very good job of preventing (potential) hackers from using their virtual private servers to launch spoofed-IP campaigns on third-party targets. However, the same very own virtual private servers of these Cloud providers appear themselves vulnerable to a number of attacks that involve the use of spoofed IP packets and/or could be deployed as packet-reflectors in attacks on third party targets. We hope the paper serves as a call for awareness and action and motivates the public Cloud providers to deploy better techniques for detection and elimination of spoofed IP traffic.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Xiaolong Xu ◽  
Xuan Zhao ◽  
Feng Ruan ◽  
Jie Zhang ◽  
Wei Tian ◽  
...  

Nowadays, a large number of groups choose to deploy their applications to cloud platforms, especially for the big data era. Currently, the hybrid cloud is one of the most popular computing paradigms for holding the privacy-aware applications driven by the requirements of privacy protection and cost saving. However, it is still a challenge to realize data placement considering both the energy consumption in private cloud and the cost for renting the public cloud services. In view of this challenge, a cost and energy aware data placement method, named CEDP, for privacy-aware applications over big data in hybrid cloud is proposed. Technically, formalized analysis of cost, access time, and energy consumption is conducted in the hybrid cloud environment. Then a corresponding data placement method is designed to accomplish the cost saving for renting the public cloud services and energy savings for task execution within the private cloud platforms. Experimental evaluations validate the efficiency and effectiveness of our proposed method.


Author(s):  
M. Chaitanya ◽  
K. Durga Charan

Load balancing makes cloud computing greater knowledgeable and could increase client pleasure. At reward cloud computing is among the all most systems which offer garage of expertise in very lowers charge and available all the time over the net. However, it has extra vital hassle like security, load administration and fault tolerance. Load balancing inside the cloud computing surroundings has a large impact at the presentation. The set of regulations relates the sport idea to the load balancing manner to amplify the abilties in the public cloud environment. This textual content pronounces an extended load balance mannequin for the majority cloud concentrated on the cloud segregating proposal with a swap mechanism to select specific strategies for great occasions.


2019 ◽  
Vol 13 (4) ◽  
pp. 325-333
Author(s):  
Xu Liu ◽  
Xiaoqiang Di ◽  
Jinqing Li ◽  
Huamin Yang ◽  
Ligang Cong ◽  
...  

Background: User behavior models have been widely used to simulate attack behaviors in the security domain. We revised all patents related to response to attack behavior models. How to decide the protected target against multiple models of attack behaviors is studied. Methods: We utilize one perfect rational and three bounded rational behavior models to simulate attack behaviors in cloud computing, and then investigate cloud provider’s response based on Stackelberg game. The cloud provider plays the role of defender and it is assumed to be intelligent enough to predict the attack behavior model. Based on the prediction accuracy, two schemes are built in two situations. Results: If the defender can predict the attack behavior model accurately, a single-objective game model is built to find the optimal protection strategy; otherwise, a multi-objective game model is built to find the optimal protection strategy. Conclusion: The numerical results prove that the game theoretic model performs better in the corresponding situation.


2021 ◽  
Vol 13 (2) ◽  
pp. 973
Author(s):  
Gigel Paraschiv ◽  
Georgiana Moiceanu ◽  
Gheorghe Voicu ◽  
Mihai Chitoiu ◽  
Petru Cardei ◽  
...  

Our paper presents the hammer mill working process optimization problem destined for milling energetic biomass (MiscanthusGiganteus and Salix Viminalis). For the study, functional and constructive parameters of the hammer mill were taken into consideration in order to reduce the specific energy consumption. The energy consumption dependency on the mill rotor spinning frequency and on the sieve orifices in use, as well as on the material feeding flow, in correlation with the vegetal biomass milling degree was the focus of the analysis. For obtaining this the hammer mill was successively equipped with 4 different types of hammers that grind the energetic biomass, which had a certain humidity content and an initial degree of reduction ratio of the material. In order to start the optimization process of hammer mill working process, 12 parameters were defined. The objective functions which minimize hammer mill energy consumption and maximize the milled material percentage with a certain specific granulation were established. The results obtained can serve as the basis for choosing the optimal working, constructive, and functional parameters of hammer mills in this field, and for a better design of future hammer mills.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 323
Author(s):  
Marwa A. Abdelaal ◽  
Gamal A. Ebrahim ◽  
Wagdy R. Anis

The widespread adoption of network function virtualization (NFV) leads to providing network services through a chain of virtual network functions (VNFs). This architecture is called service function chain (SFC), which can be hosted on top of commodity servers and switches located at the cloud. Meanwhile, software-defined networking (SDN) can be utilized to manage VNFs to handle traffic flows through SFC. One of the most critical issues that needs to be addressed in NFV is VNF placement that optimizes physical link bandwidth consumption. Moreover, deploying SFCs enables service providers to consider different goals, such as minimizing the overall cost and service response time. In this paper, a novel approach for the VNF placement problem for SFCs, called virtual network functions and their replica placement (VNFRP), is introduced. It tries to achieve load balancing over the core links while considering multiple resource constraints. Hence, the VNF placement problem is first formulated as an integer linear programming (ILP) optimization problem, aiming to minimize link bandwidth consumption, energy consumption, and SFC placement cost. Then, a heuristic algorithm is proposed to find a near-optimal solution for this optimization problem. Simulation studies are conducted to evaluate the performance of the proposed approach. The simulation results show that VNFRP can significantly improve load balancing by 80% when the number of replicas is increased. Additionally, VNFRP provides more than a 54% reduction in network energy consumption. Furthermore, it can efficiently reduce the SFC placement cost by more than 67%. Moreover, with the advantages of a fast response time and rapid convergence, VNFRP can be considered as a scalable solution for large networking environments.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Massimiliano Ferrara ◽  
Mehrnoosh Khademi ◽  
Mehdi Salimi ◽  
Somayeh Sharifi

In this paper, we establish a dynamic game to allocate CSR (Corporate Social Responsibility) to the members of a supply chain. We propose a model of a supply chain in a decentralized state which includes a supplier and a manufacturer. For analyzing supply chain performance in decentralized state and the relationships between the members of the supply chain, we formulate a model that crosses through multiperiods with the help of a dynamic discrete Stackelberg game which is made under two different information structures. We obtain an equilibrium point at which both the profits of members and the level of CSR taken up by supply chains are maximized.


Sign in / Sign up

Export Citation Format

Share Document