scholarly journals Sixth Order Numerov-Type Methods with Coefficients Trained to Perform Best on Problems with Oscillating Solutions

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2756
Author(s):  
Vladislav N. Kovalnogov ◽  
Ruslan V. Fedorov ◽  
Tamara V. Karpukhina ◽  
Theodore E. Simos ◽  
Charalampos Tsitouras

Numerov-type methods using four stages per step and sharing sixth algebraic order are considered. The coefficients of such methods are depended on two free parameters. For addressing problems with oscillatory solutions, we traditionally try to satisfy some specific properties such as reduce the phase-lag error, extend the interval of periodicity or even nullify the amplification. All of these latter properties come from a test problem that poses as a solution to an ideal trigonometric orbit. Here, we propose the training of the coefficients of the selected family of methods in a wide set of relevant problems. After performing this training using the differential evolution technique, we arrive at a certain method that outperforms the other ones from this family in an even wider set of oscillatory problems.

2008 ◽  
Vol 19 (06) ◽  
pp. 957-970 ◽  
Author(s):  
I. Th. FAMELIS

Using a new methodology for deriving hybrid Numerov-type schemes, we present new explicit methods for the solution of second order initial value problems with oscillating solutions. The new methods attain algebraic order eight at a cost of eight function evaluations per step which is the most economical in computational cost that can be found in the literature. The methods have high amplification and phase-lag order characteristics in order to suit to the solution of problems with oscillatory solutions. The numerical tests in a variety of problems justify our effort.


2009 ◽  
Vol 20 (03) ◽  
pp. 383-398 ◽  
Author(s):  
I. TH. FAMELIS

We present a new explicit Numerov-type method for the solution of second-order linear initial value problems with oscillating solutions. The new method attains algebraic order seven at a cost of six function evaluations per step. The method has the characteristic of zero dissipation and high phase-lag order making it suitable for the solution of problems with oscillatory solutions. The numerical tests in a variety of problems justify our effort.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
K. W. Moo ◽  
N. Senu ◽  
F. Ismail ◽  
M. Suleiman

A new diagonally implicit Runge-Kutta-Nyström (DIRKN) method is constructed for solving second order differential equations with oscillatory solutions. The method is originally based on existing DIRKN method derived by Senu et al. which is three-stage and fourth algebraic order. The new derived method has a variable coefficient with phase-lag of order infinity. The numerical experiments are carried out and the results show the efficiency and accuracy of the new method in comparison with the other DIRKN methods in the literature.


2004 ◽  
Vol 15 (01) ◽  
pp. 1-15 ◽  
Author(s):  
Z. A. ANASTASSI ◽  
T. E. SIMOS

In this paper we present a family of explicit Runge–Kutta methods of 5th algebraic order, one of which has variable coefficients, for the efficient solution of problems with oscillating solutions. Emphasis is placed on the phase-lag property in order to show its importance with regards to problems with oscillating solutions. Basic theory of Runge–Kutta methods, phase-lag analysis and construction of the new methods are described. Numerical results obtained for known problems show the efficiency of the new methods when they are compared with known methods in the literature. Furthermore we note that the method with variable coefficients appears to have much higher accuracy, which gets close to double precision, when the product of the frequency with the step-length approaches certain values. These values are constant and independent of the problem solved and depend only on the method used and more specifically on the expressions used to achieve higher algebraic order.


Filomat ◽  
2017 ◽  
Vol 31 (15) ◽  
pp. 4999-5012 ◽  
Author(s):  
Ming Dong ◽  
Theodore Simos

The development of a new five-stages symmetric two-step method of fourteenth algebraic order with vanished phase-lag and its first, second, third and fourth derivatives is analyzed in this paper. More specifically: (1) we will present the development of the new method, (2) we will determine the local truncation error (LTE) of the new proposed method, (3) we will analyze the local truncation error based on the radial time independent Schr?dinger equation, (4) we will study the stability and the interval of periodicity of the new proposed method based on a scalar test equation with frequency different than the frequency of the scalar test equation used for the phase-lag analysis, (5) we will test the efficiency of the new obtained method based on its application on the coupled differential equations arising from the Schr?dinger equation.


1995 ◽  
Vol 05 (02) ◽  
pp. 159-166 ◽  
Author(s):  
T.E. SIMOS

An explicit Runge-Kutta type method is developed here. This method has an algebraic order six, a large interval of periodicity and a phase-lag of order eight. It is much more efficient than other well known methods when applying to an orbit equation.


2011 ◽  
Vol 22 (02) ◽  
pp. 133-153 ◽  
Author(s):  
G. A. PANOPOULOS ◽  
Z. A. ANASTASSI ◽  
T. E. SIMOS

A new general multistep predictor-corrector (PC) pair form is introduced for the numerical integration of second-order initial-value problems. Using this form, a new symmetric eight-step predictor-corrector method with minimal phase-lag and algebraic order ten is also constructed. The new method is based on the multistep symmetric method of Quinlan–Tremaine,1 with eight steps and 8th algebraic order and is constructed to solve numerically the radial time-independent Schrödinger equation. It can also be used to integrate related IVPs with oscillating solutions such as orbital problems. We compare the new method to some recently constructed optimized methods from the literature. We measure the efficiency of the methods and conclude that the new method with minimal phase-lag is the most efficient of all the compared methods and for all the problems solved.


2001 ◽  
Vol 12 (05) ◽  
pp. 657-666 ◽  
Author(s):  
G. PAPAGEORGIOU ◽  
CH. TSITOURAS ◽  
I. TH. FAMELIS

New explicit hybrid Numerov type methods are presented in this paper. These efficient methods are constructed using a new approach, where we do not need the use of the intermediate high accuracy interpolatory nodes, since only the Taylor expansion of the internal points is needed. The methods share sixth algebraic order at a cost of five stages per step while their phase-lag order is 14 and partly satisfy the dissipation order conditions. It has be seen that the property of phase-lag is more important than the nonempty interval in constructing numerical methods for the solution of Schrödinger equation and related problems.1–3 Numerical results over some well known problems in physics and mechanics indicate the superiority of the new methods.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 713
Author(s):  
Higinio Ramos ◽  
Ridwanulahi Abdulganiy ◽  
Ruth Olowe ◽  
Samuel Jator

One of the well-known schemes for the direct numerical integration of second-order initial-value problems is due to Falkner (Falkner, 1936. Phil. Mag. S. 7, 621). This paper focuses on the construction of a family of adapted block Falkner methods which are frequency dependent for the direct numerical solution of second-order initial value problems with oscillatory solutions. The techniques of collocation and interpolation are adopted here to derive the new methods. The study of the properties of the proposed adapted block Falkner methods reveals that they are consistent and zero-stable, and thus, convergent. Furthermore, the stability analysis and the algebraic order conditions of the proposed methods are established. As may be seen from the numerical results, the resulting family is efficient and competitive compared to some recent methods in the literature.


2000 ◽  
Vol 11 (06) ◽  
pp. 1195-1208 ◽  
Author(s):  
T. E. SIMOS ◽  
JESUS VIGO AGUIAR

In this paper, a new approach for developing efficient Runge–Kutta–Nyström methods is introduced. This new approach is based on the requirement of annihilation of the phase-lag (i.e., the phase-lag is of order infinity) and on a modification of Runge–Kutta–Nyström methods. Based on this approach, a new modified Runge–Kutta–Nyström fourth algebraic order method is developed for the numerical solution of Schrödinger equation and related problems. The new method has phase-lag of order infinity and extended interval of periodicity. Numerical illustrations on the radial Schrödinger equation and related problems with oscillating solutions indicate that the new method is more efficient than older ones.


Sign in / Sign up

Export Citation Format

Share Document