scholarly journals Study of a Modified Kumaraswamy Distribution

Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2836
Author(s):  
Rashad A. R. Bantan ◽  
Christophe Chesneau ◽  
Farrukh Jamal ◽  
Mohammed Elgarhy ◽  
Waleed Almutiry ◽  
...  

In this article, a structural modification of the Kumaraswamy distribution yields a new two-parameter distribution defined on (0,1), called the modified Kumaraswamy distribution. It has the advantages of being (i) original in its definition, mixing logarithmic, power and ratio functions, (ii) flexible from the modeling viewpoint, with rare functional capabilities for a bounded distribution—in particular, N-shapes are observed for both the probability density and hazard rate functions—and (iii) a solid alternative to its parental Kumaraswamy distribution in the first-order stochastic sense. Some statistical features, such as the moments and quantile function, are represented in closed form. The Lambert function and incomplete beta function are involved in this regard. The distributions of order statistics are also explored. Then, emphasis is put on the practice of the modified Kumaraswamy model in the context of data fitting. The well-known maximum likelihood approach is used to estimate the parameters, and a simulation study is conducted to examine the performance of this approach. In order to demonstrate the applicability of the suggested model, two real data sets are considered. As a notable result, for the considered data sets, statistical benchmarks indicate that the new modeling strategy outperforms the Kumaraswamy model. The transmuted Kumaraswamy, beta, unit Rayleigh, Topp–Leone and power models are also outperformed.

Author(s):  
Bassa Shiwaye Yakura ◽  
Ahmed Askira Sule ◽  
Mustapha Mohammed Dewu ◽  
Kabiru Ahmed Manju ◽  
Fadimatu Bawuro Mohammed

This article uses the odd Lomax-G family of distributions to study a new extension of the Kumaraswamy distribution called “odd Lomax-Kumaraswamy distribution”. In this article, the density and distribution functions of the odd Lomax-Kumaraswamy distribution are defined and studied with many other properties of the distribution such as the ordinary moments, moment generating function, characteristic function, quantile function, reliability functions, order statistics and other useful measures. The model parameters are estimated by the method of maximum likelihood. The goodness-of-fit of the proposed distribution is demonstrated using two real data sets.


Stats ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 28-45
Author(s):  
Vasili B.V. Nagarjuna ◽  
R. Vishnu Vardhan ◽  
Christophe Chesneau

In this paper, a new five-parameter distribution is proposed using the functionalities of the Kumaraswamy generalized family of distributions and the features of the power Lomax distribution. It is named as Kumaraswamy generalized power Lomax distribution. In a first approach, we derive its main probability and reliability functions, with a visualization of its modeling behavior by considering different parameter combinations. As prime quality, the corresponding hazard rate function is very flexible; it possesses decreasing, increasing and inverted (upside-down) bathtub shapes. Also, decreasing-increasing-decreasing shapes are nicely observed. Some important characteristics of the Kumaraswamy generalized power Lomax distribution are derived, including moments, entropy measures and order statistics. The second approach is statistical. The maximum likelihood estimates of the parameters are described and a brief simulation study shows their effectiveness. Two real data sets are taken to show how the proposed distribution can be applied concretely; parameter estimates are obtained and fitting comparisons are performed with other well-established Lomax based distributions. The Kumaraswamy generalized power Lomax distribution turns out to be best by capturing fine details in the structure of the data considered.


2020 ◽  
Vol 70 (4) ◽  
pp. 953-978
Author(s):  
Mustafa Ç. Korkmaz ◽  
G. G. Hamedani

AbstractThis paper proposes a new extended Lindley distribution, which has a more flexible density and hazard rate shapes than the Lindley and Power Lindley distributions, based on the mixture distribution structure in order to model with new distribution characteristics real data phenomena. Its some distributional properties such as the shapes, moments, quantile function, Bonferonni and Lorenz curves, mean deviations and order statistics have been obtained. Characterizations based on two truncated moments, conditional expectation as well as in terms of the hazard function are presented. Different estimation procedures have been employed to estimate the unknown parameters and their performances are compared via Monte Carlo simulations. The flexibility and importance of the proposed model are illustrated by two real data sets.


Author(s):  
Mohamed E. Mead ◽  
Gauss M. Cordeiro ◽  
Ahmed Z. Afify ◽  
Hazem Al Mofleh

Mahdavi A. and Kundu D. (2017) introduced a family for generating univariate distributions called the alpha power transformation. They studied as a special case the properties of the alpha power transformed exponential distribution. We provide some mathematical properties of this distribution and define a four-parameter lifetime model called the alpha power exponentiated Weibull distribution. It generalizes some well-known lifetime models such as the exponentiated exponential, exponentiated Rayleigh, exponentiated Weibull and Weibull distributions. The importance of the new distribution comes from its ability to model monotone and non-monotone failure rate functions, which are quite common in reliability studies. We derive some basic properties of the proposed distribution including quantile and generating functions, moments and order statistics. The maximum likelihood method is used to estimate the model parameters. Simulation results investigate the performance of the estimates. We illustrate the importance of the proposed distribution over the McDonald Weibull, beta Weibull, modified Weibull, transmuted Weibull and exponentiated Weibull distributions by means of two real data sets.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Suleman Nasiru

The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is vital in parametric statistical modeling and inference. Thus, this study develops a new class of distributions called the extended odd Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.


Author(s):  
Brijesh P. Singh ◽  
Utpal Dhar Das

In this article an attempt has been made to develop a flexible single parameter continuous distribution using Weibull distribution. The Weibull distribution is most widely used lifetime distributions in both medical and engineering sectors. The exponential and Rayleigh distribution is particular case of Weibull distribution. Here in this study we use these two distributions for developing a new distribution. Important statistical properties of the proposed distribution is discussed such as moments, moment generating and characteristic function. Various entropy measures like Rényi, Shannon and cumulative entropy are also derived. The kthkt⁢h order statistics of pdf and cdf also obtained. The properties of hazard function and their limiting behavior is discussed. The maximum likelihood estimate of the parameter is obtained that is not in closed form, thus iteration procedure is used to obtain the estimate. Simulation study has been done for different sample size and MLE, MSE, Bias for the parameter λλ has been observed. Some real data sets are used to check the suitability of model over some other competent distributions for some data sets from medical and engineering science. In the tail area, the proposed model works better. Various model selection criterion such as -2LL, AIC, AICc, BIC, K-S and A-D test suggests that the proposed distribution perform better than other competent distributions and thus considered this as an alternative distribution. The proposed single parameter distribution is found more flexible as compare to some other two parameter complicated distributions for the data sets considered in the present study.


2021 ◽  
Vol 10 (3) ◽  
pp. 49
Author(s):  
Muhammad Z. Arshad ◽  
Muhammad Z. Iqbal ◽  
Alya Al Mutairi

In this study, we proposed a flexible lifetime model identified as the modified exponentiated Kumaraswamy (MEK) distribution. Some distributional and reliability properties were derived and discussed, including explicit expressions for the moments, quantile function, and order statistics. We discussed all the possible shapes of the density and the failure rate functions. We utilized the method of maximum likelihood to estimate the unknown parameters of the MEK distribution and executed a simulation study to assess the asymptotic behavior of the MLEs. Four suitable lifetime data sets we engaged and modeled, to disclose the usefulness and the dominance of the MEK distribution over its participant models.


Author(s):  
Salman Abbas ◽  
Gamze Ozal ◽  
Saman Hanif Shahbaz ◽  
Muhammad Qaiser Shahbaz

In this article, we present a new generalization of weighted Weibull distribution using Topp Leone family of distributions. We have studied some statistical properties of the proposed distribution including quantile function, moment generating function, probability generating function, raw moments, incomplete moments, probability, weighted moments, Rayeni and q th entropy. The have obtained numerical values of the various measures to see the eect of model parameters. Distribution of of order statistics for the proposed model has also been obtained. The estimation of the model parameters has been done by using maximum likelihood method. The eectiveness of proposed model is analyzed by means of a real data sets. Finally, some concluding remarks are given.


Author(s):  
Sule Ibrahim ◽  
Bello Olalekan Akanji ◽  
Lawal Hammed Olanrewaju

We propose a new distribution called the extended generalized inverse exponential distribution with four positive parameters, which extends the generalized inverse exponential distribution. We derive some mathematical properties of the proposed model including explicit expressions for the quantile function, moments, generating function, survival, hazard rate, reversed hazard rate and odd functions. The method of maximum likelihood is used to estimate the parameters of the distribution. We illustrate its potentiality with applications to two real data sets which show that the extended generalized inverse exponential model provides a better fit than other models considered.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Fatima Ulubekova ◽  
Gamze Ozel

The aim of the study is to obtain the alpha power Kumaraswamy (APK) distribution. Some main statistical properties of the APK distribution are investigated including survival, hazard rate and quantile functions, skewness, kurtosis, order statistics. The hazard rate function of the proposed distribution could be useful to model data sets with bathtub hazard rates. We provide a real data application and show that the APK distribution is better than the other compared distributions fort the right-skewed data sets.


Sign in / Sign up

Export Citation Format

Share Document