scholarly journals Transmitter Module Optimization for Wireless Power Transfer Systems with Single Transmitter to Multiple Receivers

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2928
Author(s):  
Joungha Lee ◽  
Seung Beop Lee

Most of the coil designs for wireless power transfer (WPT) systems have been developed based on the “single transmitter to a single receiver (S-S)” WPT systems by the empirical design approaches, partial domain searches, and shape optimization methods. Recently, the layout optimizations of the receiver coil for S-S WPT systems have been developed using gradient-based optimization, fixed-grid (FG) representation, and smooth boundary (SB) representation. In this paper, the new design optimization of the transmitter module for the “single transmitter to multiple receivers (S-M)” WPT system with the resonance optimization for the S-M WPT system is proposed to extremize the total power transfer efficiency while satisfying the load voltage (i.e., rated power) required by each receiver and the total mass used for the transmitter coil. The proposed method was applied to an application model (e.g., S-M WPT systems with two receiver modules). Using the sensitivity of design variables with respect to the objective function (i.e., total power transfer efficiency) and constraint functions (i.e., load voltage of each receiver module and transmitter coil mass) at each iteration of the optimization process, the proposed method determines the optimal transmitter module that can maximize the total power transfer efficiency while several constraints are satisfied. Finally, the optimized transmitter module for the S-M WPT system was demonstrated through comparison with experiments under the same conditions as the simulation environment.

2021 ◽  
Vol 58 (1) ◽  
pp. 3477-3488
Author(s):  
Samuel Afoakwa, Kyei Anim, Young-Bae Jung

Wireless power transfer technology via magnetic resonance coupling now has significant interest in industry and research with many applications. This paper proposes a linear multiple transmitter coil array (5 coils) for wireless power transfer for added gain and hence higher transfer efficiency in comparison to a single transmitter coil. The frequency splitting effect as a result of the coupling between the resonant transmitter coils due to their close proximity is shown to reduce the transfer efficiency to a receiver. The effect of the array spacing on splitting effect suppression is verified. It is shown that the splitting effect is sup-pressed as the distance between the coils is increased leading to a higher received signal and hence higher efficiency. Proposed horizontal displacement of the middle transmitter coils (2nd and 4th coils) in the coil array is shown to suppress frequency splitting. To further suppress the splitting effect due to the magnetic coupling between the transmitter coils, a multiple transmitter array is proposed with different coil turns. Thus it is shown that designing the multiple coil array with mixed number of coil turns (the 2nd and 4th coils are designed to have different number of turns as compared to the other three coils) causes uniform coupling among the coils reducing and eventually eliminating the splitting effect. Also to increase the efficiency at the receiver coil, displaced stacked coils are introduced on top of the coil array. The pro-posed stacked coil array is demonstrated to improve the transfer efficiency. Using the techniques, the proposed linear array structure achieves a transfer efficiency of 36.9% for a receiver coil at the boresight of the array at a transfer distance of 40 cm.


Author(s):  
Kin Yun Lum ◽  
Jyi-Shyan Chow ◽  
Kah Haur Yiauw

Minirobots which are under the field of miniature robotics, have a dimension of a few centimetres to even a few millimetres. Conventionally, these small sized robots are usually powered up by batteries. The batteries can take up a lot of space and result in a bulky system. Isolating the energy storage components from the robot itself can provide a good alternative to further down sized the robot. This can be done with the incorporation of wireless power transfer (WPT) technology. However, studies of small-size WPT are usually reported with poor efficiency. The objective of this paper is to present an efficient wireless power transfer framework for the minirobot by employing the resonant inductive coupling together with impedance matching technique. The theory and design process will be discussed. Then, a simple prototyping experiment was conducted to verify the proposed framework. Result showed 35% transfer efficiency had been achieved on a transmission distance of 0.5 cm. The proposed framework had also successfully powered a 4 watts minirobot prototype at about 16% transfer efficiency where its receiver coil was located 3.5 cm above the transmitter coil.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1417
Author(s):  
Jung-Hoon Cho ◽  
Byoung-Hee Lee ◽  
Young-Joon Kim

Electronic devices usually operate in a variable loading condition and the power transfer efficiency of the accompanying wireless power transfer (WPT) method should be optimizable to a variable load. In this paper, a reconfigurable WPT technique is introduced to maximize power transfer efficiency in a weakly coupled, variable load wireless power transfer application. A series-series two-coil wireless power network with resonators at a frequency of 150 kHz is presented and, under a variable loading condition, a shunt capacitor element is added to compensate for a maximum efficiency state. The series capacitance element of the secondary resonator is tuned to form a resonance at 150 kHz for maximum power transfer. All the capacitive elements for the secondary resonators are equipped with reconfigurability. Regardless of the load resistance, this proposed approach is able to achieve maximum efficiency with constant power delivery and the power present at the load is only dependent on the input voltage at a fixed operating frequency. A comprehensive circuit model, calculation and experiment is presented to show that optimized power transfer efficiency can be met. A 50 W WPT demonstration is established to verify the effectiveness of this proposed approach.


2011 ◽  
Vol 383-390 ◽  
pp. 5984-5989
Author(s):  
Yan Ping Yao ◽  
Hong Yan Zhang ◽  
Zheng Geng

In this paper, we present theoretical analysis and detailed design of a class of wireless power transfer (WPT) systems based on strong coupled magnetic resonances. We established the strong coupled resonance conditions for practically implementable WPT systems. We investigated the effects of non-ideal conditions presented in most practical systems on power transfer efficiency and proposed solutions to deal with these problems. We carried out a design of WPT system by using PCB (Printed Circuit Board) antenna pair, which showed strong coupled magnetic resonances. The innovations of our design include: (1) a new coil winding pattern for resonant coils that achieves a compact space volume, (2) fabrication of resonant coils on PCBs, and (3) integration of the entire system on a pair of PCBs. Extensive experiments were performed and experimental results showed that our WPT system setup achieved a guaranteed power transfer efficiency 14% over a distance of two times characteristic length(44cm). The wireless power transfer efficiency in this PCB based experimental system was sufficiently high to lighten up a LED with a signal generator.


Sign in / Sign up

Export Citation Format

Share Document